>
Fa   |   Ar   |   En
   Wiener Way to Dimensionality  
   
نویسنده ORI OTTORINO ,CATALDO FRANCO ,VUKIČEVIĆ DAMIR ,GRAOVAC ANTE
منبع iranian journal of mathematical chemistry - 2010 - دوره : 1 - شماره : 2 - صفحه:5 -15
چکیده    This note introduces a new general conjecture correlating the dimensionality dt of an infinite lattice with n nodes to the asymptotic value of its wiener index w(n). in the limit of large n the general asymptotic behavior w(n)≈ns is proposed, where the exponent s and dt are related by the conjectured formula s=2+1/dt allowing a new definition of dimensionality dw=(s-2)-1. being related to the topological wiener index, dw is therefore called wiener dimensionality. successful applications of this method to various infinite lattices (like graphene, nanocones, sierpinski fractal triangle and carpet) testify the validity of the conjecture for infinite lattices
کلیدواژه Wiener dimensionality ,Sierpinski fractals ,asymptotic Wiener index
آدرس Actinium Chemical Research, Italy, Actinium Chemical Research, Italy, University of Split, Faculty of Science, Croatia, University of Split, Faculty of Science, Croatia. R. Bošković Institute, Croatia
پست الکترونیکی ottorino.ori@alice.it
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved