>
Fa   |   Ar   |   En
   Floating Matrix Tablets of Domperidone Formulation and Optimization Using Simplex Lattice Design  
   
نویسنده Prajapati Shailesh ,Patel Laxmanbhai. ,Patel Chhaganbhai
منبع iranian journal of pharmaceutical research - 2011 - دوره : 10 - شماره : 3 - صفحه:447 -455
چکیده    The purpose of this research was to prepare a floating matrix tablet containing domperidone as a model drug. polyethylene oxide (peo) and hydroxypropyl methylcellulose (hpmc) were evaluated for matrix-forming properties. a simplex lattice design was applied to systemically optimize the drug release profile. the amounts of peo wsr 303, hpmc k15m and sodium bicarbonate were selected as independent variables and floating lag time, time required to release 50% of drug (t50) and 80% of drug (t80), diffusion coefficient (n) and release rate (k) as dependent variables. the amount of peo and hpmc both had significant influence on the dependent variables. it was found that the content of peo had dominating role as drug release controlling factor, but using suitable concentration of sodium bicarbonate, one can tailor the desired drug release from hydrophilic matrixes. the linear regression analysis and model fitting showed that all these formulations followed korsmeyer and peppas model, which had a higher value of correlation coefficient (r). the tablets of promising formulation were found to be stable for 3 months under accelerated (40°c / 75% rh) stability testing.
کلیدواژه Domperidone; Floating matrix tablets; Simplex lattice design; Release kinetics; Polyethylene oxide; Hydroxypropyl methylcellulose; Floating lag time; Total floating time
آدرس Shri Sarvajanik Pharmacy College, Department of Pharmaceutics, India, C. U. Shah College Institute of Pharmacy and Research Wadhwan, Department of Pharmaceutics, India, C. U. Shah College Institute of Pharmacy and Research Wadhwan, Department of Pharmaceutics, India
پست الکترونیکی stprajapati@gmail.com
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved