>
Fa   |   Ar   |   En
   بهبود شبکه عصبی روش گروهی مدل سازی داده با استفاده از الگوریتم حشره آب ‌سوار در پیش بینی دما  
   
نویسنده ملبوسی شراره ,خزاعی پور مهدی ,شهرکی سمیرا
منبع پژوهش هاي اقليم شناسي - 1402 - دوره : 14 - شماره : 53 - صفحه:199 -214
چکیده    تغییرات اقلیمی آشکار پیش‌ رو، تبدیل به دغدغه‌ای جدی برای جامعه بشری شده است و در این بین گرمایش جهانی یکی از گسترده ترین و مهم‌ترین مخاطرات زیست محیطی است بنابراین پیشبینی مناسب دما، اهمیت قابل توجهی در راستای سازگاری با تغییر اقلیم و کاهش آسیب پذیری ها در مقیاس های محلی دارد . برای این منظور در این تحقیق پیشبینی دما با یکی از روش های شبکه عصبی را پیشنهاد دادیم. پس از جمع‌آوری داده‌های ایستگاه اقدسیه در مرحله پیش‌پردازش پس از پاک‌سازی و نرمال‌سازی داده‌ها، عمل انتخاب ویژگی با استفاده از الگوریتم تحلیل مولفه‌های اصلی انجام می‌شود، سپس در مرحله پس‌پردازش شبکه عصبی روش گروهی مدل‌سازی داده با استفاده از الگوریتم حشره آب‌سوار بهبود داده می‌شود تا پیشبینی دما به صورت بهینه انجام شود. نوآوری این تحقیق استفاده از الگوریتم حشره آب‌سوار در بهبود شبکه عصبی روش گروهی مدل‌سازی داده است. پارامترهایی در روش گروهی مدل‌سازی داده‌ها به عنوان متغیرهای تصمیم‌گیری تعریف می‌شوند در این تحقیق مقادیر بهینه این پارامترها، توسط الگوریتم حشره آب‌سوار تعیین شده تا پیشبینی دما با دقت بالایی انجام شود و در جهت مقایسه روش پیشنهادی، از شبکه‌ عصبی پرسپترون چندلایه آموزش‌یافته با الگوریتم حشره آب سوار استفاده شده است. نتایج حاکی از میانگین مربعات خطای 0.0469 در روش پیشنهادی دارد.
کلیدواژه پیش بینی دما، شبکه عصبی روش گروهی مدل ‌سازی داده، الگوریتم حشره آب‌ سوار
آدرس دانشگاه آزاد اسلامی واحد فردوس, ایران, دانشگاه آزاد اسلامی واحد بیرجند, گروه کامپیوتر, ایران, دانشگاه آزاد اسلامی واحد بیرجند, ایران
پست الکترونیکی samshahraki@gmail.com
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved