>
Fa   |   Ar   |   En
   ground water quality analysis using machine learning techniques: a critical appraisal  
   
نویسنده chandel naman ,gupta sushindra kumar ,ravi anand kumar
منبع journal of mining and environment - 2024 - دوره : 15 - شماره : 2 - صفحه:419 -426
چکیده    Groundwater is an essential resource for human survival, but its quality is often degraded by the human activities such as improper disposal of waste. leachate generated from landfill sites can contaminate groundwater, causing severe environmental and health problems. machine learning techniques can be used to predict groundwater quality and leachate characteristics to manage this issue efficiently. this study proposes a machine learning-based model for the prediction of groundwater quality and leachate characteristics using the effective water quality index (ewqi). the leachate dataset used in this study was obtained from a landfill site, and the groundwater quality dataset was collected from literature review. the mean values of tds, ca, mg, no3-, and po4-exceeded the prescribed limit for drinking water purposes. the proposed model utilizes a machine learning architecture based on a convolutional neural network (cnn) to extract relevant features from the input data. the extracted features are then fed into a fully connected network to estimate the ewqi of the input samples. the model, trained and tested on leachate and groundwater quality datasets, achieves a high accuracy and computational efficiency, aiding in predicting groundwater quality and leachate characteristics for waste management.
کلیدواژه groundwater quality ,machine learning ,effective water quality index ,support vector machines
آدرس chandigarh university, department of civil engineering, india, chandigarh university, department of civil engineering, india, chandigarh university, department of civil engineering, india
پست الکترونیکی ravikumarbalachadi@gmail.com
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved