>
Fa   |   Ar   |   En
   improving reservoir rock classification in heterogeneous carbonates using boosting and bagging strategies: a case study of early triassic carbonates of coastal fars, south iran  
   
نویسنده ghiasi-freez j. ,ziaii m. ,moradzadeh a.
منبع journal of mining and environment - 2018 - دوره : 9 - شماره : 4 - صفحه:839 -855
چکیده    An accurate reservoir characterization is a crucial task for the development of quantitative geological models and reservoir simulation. in the present research work, a novel view is presented on the reservoir characterization using the advantages of thin section image analysis and intelligent classification algorithms. the proposed methodology comprises three main steps. first, four classes of reservoir intervals are defined using a limited number of porosity and permeability values obtained from the core plugs of kangan and dalan formations. then seven micro-scale features including distribution of pore types (interparticle, interaparticle, moldic, and vuggy), pore complexity, and cement distribution as well as textural characteristics are extracted from thin section images. finally, the features extracted from each photomicrograph and its corresponding reservoir class are used as the training data for several intelligent classifiers including decision trees, discriminant analysis functions, support vector machines, k-nearest neighbor models and two ensemble algorithms, named bagging and boosting. the relationship between the micro-scale features and the reservoir classes was studied. performance of all classifiers is evaluated using the concepts of accuracy, precision, recall, and harmonic average. the results obtained showed that the bagging decision tree delivered the best performance among the models and improved the accuracy of simple models up to 7.7% compared with the best single classifier.
کلیدواژه reservoir characterization ,intelligent classifiers ,boosting and bagging strategies ,image analysis of thin sections ,kangan and dalan formations
آدرس shahrood university of technology, faculty of mining, petroleum & geophysics engineering, iran, shahrood university of technology, faculty of mining, petroleum & geophysics engineering, iran, university of tehran, school of mining engineering, college of engineering, iran
پست الکترونیکی a_moradzadeh@yahoo.com
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved