>
Fa   |   Ar   |   En
   Fault Detection and Diagnosis by Using Correlation Coefficients Between Variables  
   
نویسنده MAK WENG YEE ,IBRAHIM KAMARUL ASRI
منبع jurnal teknologi - 2009 - دوره : 50 - شماره : F - صفحه:1 -13
چکیده    Chemical plants have become increasingly complex and stringent requirements are needed on the desired final product quality. accurate process fault detection and diagnosis (pfdd) at an early stage of the process is important to modern chemical plants to achieve the above requirements. this paper focuses on the application of fault detection and diagnosis using correlation coefficients between process variables as a pfdd tool. an industrial distillation column is modeled and chosen as the case study. principal component analysis (pca) and partial correlation analysis (pcorra) are used to develop the correlation coefficients between the process variables and selected quality variables of interest. faults considered in this research are sensor faults, valve faults and controller faults. these faults are comprised of single cause faults and multiple cause faults as well as significant faults and insignificant faults. shewhart control chart and range control chart are used with the developed correlation coefficients to detect and diagnose the pre-designed faults in the process. results show that both methods based on pca and pcorra have good pfdd performance. in this study, the pcorra method was better than the pca method in detecting insignificant faults
کلیدواژه multivariate statistical process control ,principal component analysis ,partial correlation analysis ,fault detection and diagnosis ,correlation coefficients
آدرس UTM, Faculty of Chemical and Natural Resources Engineering, Department of Chemical Engineering, Malaysia, UTM, Faculty of Chemical and Natural Resources Engineering, Department of Chemical Engineering, Malaysia
پست الکترونیکی kamarul@fkkksa.utm.my
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved