|
|
شناخت، تحلیل و بررسی کاربرد هوش جمعی الگوریتم بهینهسازی فیزاروم در معماری و شهرسازی
|
|
|
|
|
نویسنده
|
متینی محمد رضا ,خاقانی سعید ,برادران امیربهادر
|
منبع
|
هنرهاي زيبا - معماري و شهرسازي - 1399 - دوره : 25 - شماره : 2 - صفحه:83 -91
|
چکیده
|
در سالهای گذشته، الگوریتمهای بسیاری معرفی شدند تا به طور خاص مسائل بهینهسازی مختلفی در زمینه رشتههای معماری و شهرسازی را حل کنند که ردپای طبیعت در اکثر این الگوریتمها به چشم میخورد. انگیزه چنین الگوریتمهایی حل مسائل پیچیدهی مطرح مانند بهینهسازی انرژی، سازه، قطعات نما، حل چالشهای موجود در طراحی گرههای شهری، مسیریابی بهینه راهآهن و شریانهای شهری، مدیریت ترافیک و دیگر بحثهای مرتبط در مقیاسهای خرد و کلان میباشد. هدف این پژوهش در گام نخست بررسی الگوریتمهای هوشجمعی و در گام بعدی، سنجش رفتاری الگوریتم بهینهسازی فیزاروم در فرمیابی شبکهراهآهنشهریتهران با تعریف چهار پارامتر شامل گسلها، بناهای تاریخی، زیرگذرها و پلهاتقاطعها، به عنوان موانعی برای رشد و مسیریابی در فضای مسئله میباشد. روش پژوهش حاضر، استدلالی و گردآوری مطالب مبتنی بر روش کتابخانهای جهت آشنایی با اصول و قوانین حاکم بر الگوریتمهای هوشجمعی است. در ادامه نیز به کمک مدلسازیها و شبیهسازیهای نرمافزاری، به بررسی و سنجش رفتاری الگوریتم بهینهسازی فیزاروم در برخورد با موانع تعریف شده در فرمیابی شبکهراهآهنشهریتهران خواهد پرداخت. یافتهها و نقشههای خروجی حاصل از مسیریابی فیزاروم در فضای مسئله حاکی از شناسایی درست موانع تعریفی و فرمیابی دقیق و البته بدیعی از شبکهراهآهنشهریتهران است. الگوریتم بهینهسازی فیزاروم توانسته با دقت و بدون خطا، فرمیابی شبکه را بدون تقاطع با موانع تعریفشده انجام دهد.
|
کلیدواژه
|
بهینهسازی، شبکه راهآهن شهری، فرمیابی، الگوریتمهای هوش جمعی، الگوریتم بهینهسازی فیزاروم
|
آدرس
|
دانشگاه هنر, دانشکده معماری و شهرسازی, ایران, دانشگاه تهران، پردیس هنرهای زیبا, دانشکده معماری, ایران, دانشگاه تهران، پردیس هنرهای زیبا, ایران
|
|
|
|
|
|
|
|
|
|
|
Recognition, analysis and study of swarm intelligence application of Physarum optimization algorithm in architecture and urbanism
|
|
|
Authors
|
Matini Mohammad Reza ,Khaghani Said ,Baradaran AmirBahador
|
Abstract
|
The amazing behaviors observed in nature form attractive sources of inspiration for solving realworld problems. Swarm intelligence computations are very important among natureinspired computations because they focus on the social behavior of centralized, selforganized systems. Swarm intelligence is inspired by the behavior of some animals or insects, such as ants, termites, birds, fish, and organisms. This is caused by sudden behaviors from local interactions between the particles themselves and forms intelligent behaviors at the group level. Robustness and resilience make swarm intelligence a successful design model for algorithms that deal with growing complex problems. Physarum Polycephalum is one of the organisms who’s intelligent, complex and social behavior of the particles that make up its food resources, and the construction of strong networks to achieve this goal, motivate the use of Physarum Polycephalum to solve challenging optimization problems in architecture and urbanism. The aim of this study is to try to further study and recognize the characteristics and efficiency of swarm intelligence algorithms, and to measure the ability of the Physarum optimization algorithm in dealing with the challenges posed in the problem area. In fact, this study aims to measure the ability and performance of the Physarum optimization algorithm in dealing with four parameters defined in the problem as an example of existing challenges, including faults, historic buildings, underpasses and bridges and intersections, to investigate in shaping the Tehran Urban Railway Network, in order to take an effective step in the field of functional and behavioral growth of the Physarum optimization algorithm. The research method in the present study is analyticaldescriptive method and collecting materials based on library method and searching for some principles and rules governing natural phenomena, which have been studied with the help of software modeling, simulation and investigation. In the first part of this research, with the help of library studies, an attempt has been made to obtain a correct analysis and complete knowledge of swarm intelligence algorithms. It then evaluates the Physarum optimization algorithm as one of natureinspired algorithms and collective intelligence in network formation. After examining the location of the mentioned parameters in relation to the existing network and Tehran metro stations, their boundaries are determined in the problem space to provide the conditions for formulation for the algorithm. In the next step, the Physarum optimization algorithm is introduced to formulate the problem space. As is clear (Map 2), this algorithm avoids obstacles and tries to find the best and most optimal way to reach the stations or defining points in the problem. Searching for problem space (Tehran city) by the algorithm continues to the extent that it makes sure to search the entire problem space and access all points. The findings and exit maps obtained from the Physarum pathfinding in the problem area indicate the correct identification of the defining barriers and the accurate and, of course, innovative formulation of the Tehran Urban Railway Network. Physarum’s optimization algorithm has been able to accurately and without error perform network configuration with defined barriers.
|
Keywords
|
|
|
|
|
|
|
|
|
|
|
|