>
Fa   |   Ar   |   En
   استفاده از داده‌های بازتحلیلی و مدل‌های هوشمند در شبیه‌سازی رابطه بارش رواناب (مطالعه موردی: حوضه آبریز بازفت)  
   
نویسنده زکی بهزاد ,آخوند علی علی محمد ,فتحی مقدم منوچهر ,مداح محمد امین
منبع علوم و مهندسي آبياري - 1403 - دوره : 47 - شماره : 2 - صفحه:17 -30
چکیده    امروزه استفاده از مدل‌های هوشمند در شبیه‌سازی فرایند بارش رواناب کاربرد زیادی به ویژه در مدیریت منابع آب پیدا کرده است. در این مطالعه به‌منظور پیش‌بینی سری زمانی جریان روزانه در ایستگاه‌ هیدرومتری مرغک، واقع در حوضه کارون، از مدل‌ هوشمند شبکه عصبی‌مصنوعی تلفیق شده با آنالیز موجک استفاده شده است.  برای این منظور، سری زمانی بارش مشاهده‌ای و بازتحلیلی era-intrim  به مدت 16 سال (1382-1397) به وسیله ی تبدیل موجک به زیر سری‌های فرکانسی تجزیه شد، سپس این زیر سری‌ها هر کدام به طور جداگانه به عنوان داده‌های ورودی به مدل‌ شبکه عصبی مصنوعی وارد گردید. نتایج به دست آمده حاکی از آن بود که داده‌های بازتحلیلی توانایی بالایی در شبیه‌سازی مدل‌های بارش رواناب دارند و می‌توانند جایگزین خوبی برای داده‌های مشاهده‌ای ایستگاه‌های بارش باشند. هم چنین مطابق نتایج روش تبدیل موجک می‌تواند بر بهبود عملکرد مدل ann ساده برای حوضه بازفت در مقیاس روزانه برابر 38 درصد و در مقیاس ماهانه برابر 72 درصد موٌثر باشد.
کلیدواژه تبدیل موجک، سری زمانی بارش، شبکه عصبی مصنوعی، ایستگاه مرغک، era-intrim
آدرس دانشگاه شهید چمران اهواز, دانشکده مهندسی آب و محیط زیست, گروه هیدرولوژی و منابع آب, ایران, دانشگاه شهید چمران اهواز, دانشکده مهندسی آب و محیط زیست, گروه هیدرولوژی و منابع آب, ایران, دانشگاه شهید چمران اهواز, دانشکده مهندسی آب و محیط زیست, گروه سازه‌های آبی, ایران, دانشگاه شهید چمران اهواز, دانشکده مهندسی آب و محیط زیست, گروه هیدرولوژی و منابع آب, ایران
پست الکترونیکی maddah.ma@gmail.com
 
   use of analytical data and intelligent models in runoff precipitation simulation (case study: bazoft basin)  
   
Authors zaki behzad ,akhoond-ali ali mohammad ,fathi-moghadam manoochehr ,maddah mohammad amin
Abstract    today, the use of intelligent models in simulating runoff has been widely used in water resources management. in this study, in order to predict the daily flow time series of the morghak hydrometric station in karun basin, an intelligent model of artificial neural network combined with wavelet analysis has been used. for this purpose, the era-intrim observational and analytical precipitation time series for 16 years (1378-1382) was decomposed by wavelet transform into frequency subsets, then each subset separately as input data to the artificial neural network model was introduced. the results showed that the analytical data have a high ability to simulate runoff precipitation models and can be a good alternative to observation data of rainfall stations. also, according to the results of the wavelet transform technique, it can be effective in improving the performance of the simple ann model for the bazoft basin by 38% on a daily scale and 72% on a monthly scale.
Keywords artificial neural network ,era-interim ,morghak station ,precipitation time-series ,wavelet transform.
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved