>
Fa   |   Ar   |   En
   A Numerical Simulation Approach to Calculating Hygrothermal Deformation of Concrete Based on Heat and Moisture Transfer in Porous Medium  
   
نویسنده Chen D. P. ,Qian C. X. ,Liu C. L.
منبع international journal of civil engineering - 2010 - دوره : 8 - شماره : 4 - صفحه:287 -296
چکیده    Concrete deformation due to temperature and moisture condition will always develop simultaneously and interactively. the environmentally (hygral and thermally) induced stress and deformation are essential to concrete durability. to simulate the deformation of concrete caused by the coupling effect of temperature and moisture, a numerical simulation approach is proposed comprising analytical process and finite element analysis is proposed based on the mechanism of heat and moisture transfer in porous medium. in analytical method, laplace transformation and transfer function were used to simplify and solve the coupled partial differential equations of heat and moisture transfer. the hygro-thermal deformation of concrete is numerically simulated by finite element method (fem) based on the obtained temperature and moisture stress transformed from the solved moisture distribution. this numerical simulation approach avoids the complex eigenvalues, coupling difficulty and low accuracy in other solving method, and also effectively calculates the moisture induced shrinkage which is almost impossible using familiar fem software. furthermore, a software named combined temperature and moisture simulation system for concrete (ctmsoft) was represented and developed by a mix programming of visual basic, matlab and ansys. ctmsoft provided a simple and more intuitive interface between user and computer by providing a graphical user interface (gui). the validity of the numerical simulation approach was verified by two cases analysis
کلیدواژه hygro-thermal deformation ,porous media ,concrete ,numerical simulation ,mix programming
آدرس Anhui University of Technology, School of Civil Engineering, Southeast University, China, AnhuiUniversity of Technology, School of Civil Engineering, China
پست الکترونیکی liuchunlin@ahut.edu.cn
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved