|
|
توسعه و بهینهسازی الگوریتم ویژه یادگیری عمیق در تشخیص بیماریهای مختلف برگی درخت بِه
|
|
|
|
|
نویسنده
|
نادری بنی امین ,باقرپور حسین ,امیری پریان جعفر
|
منبع
|
ماشين هاي كشاورزي - 1403 - دوره : 14 - شماره : 4 - صفحه:445 -458
|
چکیده
|
بیماریهای درخت بِه یکی از نگرانیهای عمده باغداران میباشد و شناسایی آنها در پایش درختان ضروری است چرا که زیآنهای اقتصادی قابلتوجهی وارد میکند. از این رو، تشخیص بهموقع و موثر بیماریهای برگی درختان بِه، نقش مهمی در جلوگیری از این ضرر اقتصادی دارد. بیشتر علائم بیماری این درخت در برگ ظاهر میشود و تشخیص آنها نیاز به متخصصان خبره داشته و از طرفی زمانبر بوده و هزینه آزمایشگاهی بالایی دارد. اصلیترین بیماریهای این محصول شامل آتشک، زخم برگ و سفیدک پودری است. با پیشرفت الگوریتمهای هوش مصنوعی، شبکههای عصبی مختلفی برای طبقهبندی معرفی شدهاند که از مهمترین آنها میتوان به شبکههای عصبی پیچشی (کانولوشنی) اشاره کرد. هدف اصلی این مطالعه بهینهسازی و تنظیم پارامترهای اصلی این شبکهها بهمنظور افزایش دقت تشخیص بیماریهای برگی درخت بِه میباشد. در این مطالعه در رویکرد اول با استفاده از یادگیری انتقالی، دو الگوریتم مهم inception-resnet-v2 و resnet-101 و در رویکرد دوم یک الگوریتم بهینهشده پیشنهادی برای طبقهبندی بیماریها استفاده شد. نتایج مدلها نشان داد که حذف تصادفی باعث اصلاح دقت بعضی مدلها گردید و بیشترین عملکرد با 64 نورون در لایه مخفی حاصل گردید. مدل پیشنهادی دقت بالاتری نسبت به روش انتقالی داشت. با بررسی نتایج کلی، مدل پبشنهادی با چهار لایه پیچشی در بلوک کانولوشنی، یک لایه مخفی در بلوک شبکه عصبی و ضریب دراپاوت 0.5 بیشترین عملکرد را ارایه داد.
|
کلیدواژه
|
بیماری آتشک، زخم برگ، سفیدک پودری، شبکه عصبی پیچشی، ماتریس اغتشاش
|
آدرس
|
دانشگاه بوعلی سینا, دانشکده کشاورزی, گروه مهندسی بیوسیستم, ایران, دانشگاه بوعلی سینا, دانشکده کشاورزی, گروه مهندسی بیوسیستم, ایران, دانشگاه بوعلی سینا, دانشکده کشاورزی, گروه مهندسی بیوسیستم, ایران
|
پست الکترونیکی
|
amiriparian@basu.ac.ir
|
|
|
|
|
|
|
|
|
development and optimization of a novel deep learning model for diagnosis of quince leaf diseases
|
|
|
Authors
|
naderi beni a. ,bagherpour h. ,amiri parian j.
|
Abstract
|
introductiondetection of tree leaf diseases plays a crucial role in the horticultural field. these diseases can originate from viruses, bacteria, fungi, and other pathogens. if proper attention is not given, these diseases can drastically affect trees, reducing both the quality and quantity of yields. due to the importance of quince in iran’s export market, its diseases can cause significant economic losses to the country. therefore, if leaf diseases can be automatically identified, appropriate actions can be taken in advance to mitigate these losses. traditionally, the identification and detection of tree diseases rely on experts’ naked-eye observations. however, the physical condition of the expert such as eyesight, fatigue, and work pressure can affect their decision-making capability. today, deep convolutional neural networks (dcnns), a novel approach to image classification, have become the most crucial detection method. dcnns improve detection or classification accuracy by developing machine-learning models with many hidden layers to extract optimal features. this approach has significantly enhanced the classification and identification of diseases affecting plants and trees. this study employs a novel cnn algorithm alongside two pre-trained models to effectively identify and classify various types of quince diseases.materials and methodsimages of healthy and diseased leaves were acquired from several databases. the majority of these images were sourced from the agricultural research center of isfahan province in iran, supplemented by contributions from researchers who had previously studied in this field. other supporting datasets were obtained from internet sources. this study incorporated a total of 1,600 images, which included 390 images of fire blight, 384 images of leaf blight, 406 images of powdery mildew, and 420 images of healthy leaves. of all the images obtained, 70%, 20%, and 10% were randomly selected for the network’s training, validation, and testing, respectively. image flipping, rotation, and zooming were applied to augment the training dataset. in this research, a proposed convolutional neural network (cnn) combined with image processing was developed to classify quince leaf diseases into four distinct classes. three cnn models, including inception-resnet-v2, resnet-101, and our proposed cnn model, were investigated, and their performances were compared using essential indices including precision, sensitivity, f1-score, and accuracy. to optimize the models’ performance, the impact of dropout with a 50% probability and the number of neurons in the hidden layers were examined. our proposed cnn model consists of an architecture with four convolutional layers, with 224 × 224 rgb images as input to the first layer, which has 16 filters, followed by additional convolutional layers with 32, 64, and 128 filters respectively. activation functions of relu combined with max-pooling were used at each convolutional layer, and softmax activation was applied in the last layer of the neural network to convert the output into a probability distribution.results and discussionthree confusion matrices based on the test dataset were constructed for all the cnn models to compare and evaluate the performance of the classifiers. the indices obtained from the confusion matrices indicated that inception-resnet-v2 and resnet-101 achieved accuracies of 79% and 72%, respectively. while all models exhibited promising efficiency in classifying leaf diseases, the proposed shallow cnn model stood out with an impressive accuracy of 91%, marking it as the most effective solution. the comprehensive results indicate that the optimized cnn model, featuring four convolutional layers, one hidden layer with 64 neurons, and a dropout rate of 0.5, outperformed the transfer learning models.conclusionthe findings of this study demonstrate that our developed proposed cnn model provides a high-performance solution for the rapid identification of quince leaf diseases. it excels in real-time detection and monitoring, achieving remarkable accuracy. notably, it can identify fire blight and powdery mildew with a precision exceeding 95%.
|
Keywords
|
confusion matrix ,convolutional neural network ,fire blight ,leaf blight ,powdery mildew
|
|
|
|
|
|
|
|
|
|
|