|
|
مدلسازی و ساخت ربات کارنده بذر در سینی نشاء (مطالعه موردی: چغندرقند)
|
|
|
|
|
نویسنده
|
آبدانان مهدی زاده سامان
|
منبع
|
ماشين هاي كشاورزي - 1402 - دوره : 13 - شماره : 3 - صفحه:249 -266
|
چکیده
|
با وجود کاهش شدید منابع آبی ایران و رشد روزافزون جمعیت، نیاز به تولید غذا و محصولات کشاورزی بیش از گذشته است. در گذشته، اغلب کاشت گیاهان بهصورت کشت مستقیم بذر صورت میپذیرفت و منابع آبی بسیار خصوصا آبهای زیرزمینی برای کشت مستقیم بذر و جوانهزنی گیاه مصرف میشد. از جمله روشهای کاهش مصرف آب، کود و سموم کشت نشایی بهجای کشت مستقیم بذر است. لذا هدف از پژوهش حاضر مدلسازی دینامیکی و ساخت سامانه کاشت بذر در سینی نشاء در نظر گرفته شد. بدین منظور ابتدا یک بازوی کارنده مدلسازی و موقعیت کارنده در هر لحظه بهدست آمد. سپس براساس مدلسازی دینامیکی بازو ساخته و عملیات کشت بذر در سینی نشاء صورت پذیرفت. ارزیابی سامانه کاشت دو سطح سرعت پیشروی 5 و 10 سانتیمتر بر ثانیه برای بذر چغندرقند انجام گرفت که ظرفیت نامی این بذرکار بین 3579 تا 4613 سلول در ساعت بود. در ضمن شاخصهای نکاشت و چندگانه کاشت در 3000 سلول نیز بهترتیب 0.03 و 8.17 درصد بهدست آمد. با توجه به دقت کاشت، سرعت عملکرد کارنده و همچنین مصرف اندک انرژی (25.56 واتساعت) این سامانه توانایی جایگزینی بذرکاری دستی در سینی نشاء را دارد.
|
کلیدواژه
|
پردازش تصویر، چغندرقند، سامانه کارنده، سینی نشاء، مدلسازی
|
آدرس
|
دانشگاه علوم کشاورزی و منابع طبیعی خوزستان, دانشکده مهندسی زراعی و عمران روستایی, گروه مکانیک بیوسیستم, ایران
|
پست الکترونیکی
|
saman.abdanan@gmail.com
|
|
|
|
|
|
|
|
|
modeling and fabrication of a robot for sowing in a seedling tray (case study: sugar beet)
|
|
|
Authors
|
abdanan mehdizadeh s.
|
Abstract
|
introductionadopting new technologies for crop growth has the characteristics of improving disaster resistance and stress tolerance, ensuring stable yields, and improving product quality. currently, the cultivation of seed trays relies on huge labor power, and further mechanization is needed to increase production. however, there are some problems in this operation, such as the difficulty of improving the speed of a single machine, seedling deficiency detection, automatic planting, and controlling the quality, which need to be solved urgently. to solve these problems, there are already some meaningful attempts. si et al. (2012) applied a photoelectric sensor to a vegetable transplanter, which can measure the distance between seedlings and the movement speed of seedlings in a seedling guide tube, to prevent omission transplantation. yang et al. (2018) designed a seedling separation device with reciprocating movement of the seedling cup for rice transplanting. tests show that the structure of the mechanical parts of the seedling separation device meets the requirements of seed movement. the optimization of the control system can improve the positioning accuracy according to requirements and achieve the purpose of automatic seedling division. chen et al. (2020) designed and tested of soft-pot-tray automatic embedding system for a light-economical pot seedling nursery machine. the experimental results showed that the embedded-hard-tray automatic lowering mechanism was reliable and stable as the tray placement success rate was greater than 99%. the successful tray embedding rate was 100% and the seed exposure rate was less than 1% with a linear velocity of the conveyor belt of 0.92 m s-1. the experiment findings agreed well with the analytical results.despite the sharp decline in iran’s water resources and growing population, the need to produce food and agricultural products is greater than ever. in the past, most seeds were planted directly into the soil, and many water resources, especially groundwater, were used for direct seed sowing and plant germination. one way to reduce the consumption of water, fertilizers, and pesticides is to plant seedlings instead of direct seed sowing. therefore, the purpose of this study was dynamic modeling and fabrication of seed planting systems in seedling trays.material and methodsin this experiment, flores sugar beet seeds (maribo company, denmark) were used. the seedling trays had dimensions of 29.5*60 cm with openings and holes of 5.5 and 4 cm, respectively. to plant seeds in seedling trays, first, a planter arm was modeled and its position was obtained at any time. then, based on dynamic modeling, the arm was constructed and a capacitive proximity sensor (cr30-15ac, china) and ir infrared proximity sensor (e18-d80nk, china) were used to find the location of seedling trays on the input conveyor and position of discharging arm, respectively. to achieve a stable and effective control system, a micro-controller-based circuit was developed to signal the planting system. the seed planting operation was performed in the seedling tray according to the coordinates which were provided through the image processing method. the planting system was evaluated at two levels of forward speed (5 and 10 cm s-1). moreover, a smartphone program was implemented to monitor the operation of the planting system.results and discussionthe planting system was assessed for sugar beet seeds using two levels of forward speed (5 and 10 cm s-1). the nominal capacity of this planter ranged from 3579 to 4613 cells per hour, with a miss and multiple implantation indices of 0.03% and 8.17%, respectively, in 3000 cells. due to its planting accuracy, speed, and low energy consumption (25.56 watt-hours), this system has the potential to replace manual seeding in seedling trays.conclusionin the present study, a seed-sowing system for planting seedling trays was designed, constructed, and evaluated based on dynamic modeling. in the developed system, unlike previous research, planting location detection was conducted through image processing. additionally, a smartphone program was established to monitor the operation of the planting system without interfering with its performance. this study demonstrates that image processing can successfully detect planting locations and can effectively improve efficiency over time for major producers.
|
|
|
|
|
|
|
|
|
|
|
|
|