|
|
تشخیص درصدهای مختلف پالم در روغن ذرت به کمک بینی الکتریکی (تشخیص تقلب)
|
|
|
|
|
نویسنده
|
زنگنه وندی زهرا ,زنگنه وندی زهرا ,جوادی کیا حسین ,جوادی کیا حسین ,عقیلی ناطق ناهید ,عقیلی ناطق ناهید ,ندرلو لیلا ,ندرلو لیلا
|
منبع
|
ماشين هاي كشاورزي - 1402 - دوره : 13 - شماره : 2 - صفحه:163 -174
|
چکیده
|
روغنهای جامد نباتی یا روغنهایی مثل پالم دارای اسید چرب اشباع بالا هستند، چنین روغنهایی میتوانند باعث بالا رفتن چربی خون، افزایش کلسترول بدن و در نهایت موجب گرفتگی و انسداد عروق شوند. در این پژوهش از یک سامانه بهمنظور تشخیص میزان پالم در روغن ذرت استفاده شده که شامل ده حسگر نیمههادی اکسید فلزی بود. ویژگیهای استخراج شده از سیگنالهای بهدستآمده از بینیالکتریکی با روشهای تحلیل مولفههای اصلی، شبکهی عصبی مصنوعی، انفیس و سطح پاسخ پردازش شدند. نمونههای مورد آزمایش شامل روغن ذرت خالص، روغن ذرت دارای 25 درصد پالم، روغن ذرت 50 درصد و روغن ذرت 75 درصد است. براساس نتایج بهدستآمده دقت طبقهبندی در روشهای pca،ann،anfis و rsm بهترتیب برابر 87، 71.9، 93.8 و 96.9 درصد است و باتوجه به این نتایج روش سطح پاسخ روشی مناسبتری برای تشخیص درصد پالم در روغن ذرت میباشد. با مدل ارائه شده میتوان میزان روغن پالم بیش از حد مجاز استفاده شده را تشخیص داد.
|
کلیدواژه
|
اسید چرب، ارزیابی حسی، تقلب
|
آدرس
|
دانشگاه رازی, ایران, دانشگاه رازی, ایران, دانشگاه رازی, ایران, دانشگاه رازی, ایران, دانشگاه رازی, دانشکده کشاورزی سنقر, ایران, دانشگاه رازی, دانشکده کشاورزی سنقر, ایران, دانشگاه رازی, ایران, دانشگاه رازی, ایران
|
پست الکترونیکی
|
lnaderloo@gmail.com
|
|
|
|
|
|
|
|
|
detection of different percentages of palm in corn oil with the help of an electric nose
|
|
|
Authors
|
zangene wandi z. ,zangene wandi z. ,javadikia h. ,javadikia h. ,aghili nategh n. ,aghili nategh n. ,naderloo l. ,naderloo l.
|
Abstract
|
introductionthe use of corn oil in diets is due to its positive effects on cardiovascular and immune systems. corn oil is composed of 99% triacylglycerol, with 59% unsaturated fatty acids and 13% saturated fatty acids. of the unsaturated fatty acids, 24% contain a double bond. because of this composition, corn oil can be a good alternative to other oils high in saturated fatty acids, as it reduces blood cholesterol levels.this study employed an electrical nasal system to detect the amount of palm oil present in corn oil. the properties extracted from the signals obtained by the device were processed using principal component analysis, artificial neural networks, infusion, and response surface methods. the results were then compared to find the best method for detecting palm oil levels in corn oil.materials and methods the required palm oil was obtained from the nazgol oil agro-industrial plant, while the corn oil was obtained from natural lubrication centers. to prepare samples with different percentages of palm oil, 75 grams of palm oil and corn oil with the specified percentages were mixed and stored in special containers.in the electrical nose system, ten metal oxide semiconductor sensors (mos) were used to collect output data. pre-processing operations were performed on this data using rsm, anfis, pca, and ann methods to estimate the percentage of palm oil in corn oil. the unscrambler v.9 software, design expert 8.07.1, and matlab r2013a were used to analyze the results.results and discussionbased on the score plot, pc-1 and pc-2 explain 53% and 25%, respectively, describing the variance between samples for a total of 78 data points. the analysis indicates that sensors 7 and 8 have minimal impact on the detection process and can be removed from the sensor array. when reducing the cost of the olfactory system’s sensor array, sensor 6 plays a more significant role than other sensors in detecting corn oil with palm composition.according to the loading diagram of palm percentage in corn oil, the mq6 sensor had the least effect in classifying different percentages of palm in corn oil and pattern identification. out of all functional parameters (accuracy, sensitivity, and specificity), the rsm method is deemed more appropriate for determining the percentage of palm in corn oil.regarding the separation of corn oil and palm oil by anfis, rsm, and ann, the results in table 3-1 indicate that the rsm method is better suited for classifying corn and palm oil.conclusion in this study, we used an electronic multi-sensor system based on metal oxide sensors to analyze various aromatic compounds in different oil and palm samples and to detect the presence of palm. the system provided comparable information for classifying different samples of palm oils. using pca, ann, anfis, and rsm methods, we evaluated the system’s performance in differentiating and classifying various oil and palm samples.the results obtained from the loading diagrams for the detection of palm in corn oil indicated that the mq6 sensor had the least impact on the detection process. therefore, this sensor can be removed from the sensor array.additionally, our analysis showed that using the rsm method is more effective in detecting different percentages of palm in corn oil. overall, our study demonstrates the efficacy of the electronic multi-sensor system in analyzing different oil and palm samples and detecting the presence of palm.
|
|
|
|
|
|
|
|
|
|
|
|
|