>
Fa   |   Ar   |   En
   مطالعه ترموکمپرسور بخار به‌منظور کاهش مصرف انرژی در خط تولید شکر به روش دینامیک سیالات محاسباتی  
   
نویسنده رضوانی وند فنائی عادل ,حسن پور علی ,نیکبخت علی محمد
منبع ماشين هاي كشاورزي - 1399 - دوره : 10 - شماره : 2 - صفحه:241 -253
چکیده    ترموکمپرسور به‌وسیله قسمت همگرا واگرا عمل فشرده‌سازی سیال ثانویه را انجام می‌دهد. سادگی و نداشتن بخش متحرک، از جمله مزیت‌های آن نسبت به کمپرسورهای مکانیکی است. فهم جامع از چگونگی عملکرد در داخل ترموکمپرسور، برای استفاده عملی از آن فوق‌العاده مفید خواهد بود. ویژگی‌های ترمودینامیکی جریان‌های ورودی و تغییرات آن‌ها در خروجی، مانند فشار، دما و سرعت نیازمند انجام شبیه‌سازی عددی می‌باشد. در این مطالعه از دینامیک سیالات محاسباتی و کدهای تجاری انسیس فلوئنت برای نمایش جریان داخل ترموکمپرسور در جهت استفاده در کارخانه تولید شکر استفاده شده است. حلگر بر مبنای چگالی به‌عنوان حلگر جریان انتخاب شد و شرط مرزی نوع فشار ورودی برای هر دو جریان اولیه و ثانویه در ورودی و شرط مرزی فشار خروجی برای مرز خروجی جریان اختلاطی اعمال گردید. از تابع دیواره‌ی استاندارد در نزدیکی دیواره استفاده شد. نتایج نشان داد که در بخش تخلیه ترموکمپرسور، فشار از 0/1 بار به 0/32 بار تقویت شد و دما افزایشی در حدود 25 درجه نسبت به جریان ثانویه داشت. همچنین عدد ماخ به حدود 0.15 کاهش یافت. برای درک بهتر پدیده اتفاق افتاده در داخل ترموکمپرسور تصاویر گرافیکی آورده شد. در کانتور مربوط به عدد ماخ ابتدا جریان به‌صورت فراصوت ایجاد شد، سپس با گذر از بخش سطح ثابت یک شوک اتفاق افتاد و جریان در دیفیوزر به‌صورت فروصوت درآمد. در انتها، نتیجه‌گیری شد که دینامیک سیالات محاسباتی از پتانسیل خوبی برای پیش‌بینی عملکرد یک ترموکمپرسور به‌منظور استفاده در یک کارخانه تولید شکر برخوردار است.
کلیدواژه انرژی مصرفی، ترموکمپرسور، دینامیک سیالات محاسباتی، روش حجم محدود
آدرس دانشگاه ارومیه, ایران, دانشگاه ارومیه, گروه مکانیک بیوسیستم, ایران, دانشگاه ارومیه, گروه مکانیک بیوسیستم, ایران
 
   Study of The Vapor ThermoCompressor to Reduce Energy Consumption in the Sugar Production Line using Computational Fluid Dynamics  
   
Authors Hasanpour A ,Rezvanivand fanaei A ,Nikbakht A. M
Abstract    Introduction;Large industrial factories often discharge significant quantities of lowpressure steam (dead steam) into the atmosphere, which causes energy losses. Retaining lowpressure steam content reduces boiler load, resulting in energy savings and lower costs for the fuel consumption (for example, gas consumption bill in a factory). The boostedpressure steam is used in processes such as distillation, hot water production, space heating or vacuum generation. If the vapor pressure for the intended application is low, a thermocompressor is able to increase the pressure and temperature to the required level. Thermocompressors are a special type of gas compressor that uses an actuator to compress secondary fluid and does not have any blades or moving parts. The accurate prediction of the thermocompressor performance improves the reliability of this process and increases its efficiency.;Materials and Methods;Two important characteristics for the current thermocompressors are entrainment ratio (ER) and compression ratio (CR). The first is the dimensionless mass flow rate, and the second is the dimensionless pressure. The wet steam theory as a classic theory is used by WolmerFrankelZeldovich to calculate the amount of liquid particles. In order to select the best geometry for the thermocompressor among all possible geometries, the performance of each model must be compared with other models. In following, the case that includes characteristic parameters associated with the target values has been selected.;The commercial Ansys Fluent Versions 15, based on the finite volume method (FVM) was used to simulate and monitoring the flow behavior inside the thermocompressor. The governing partial differential equations (PDE) were solved implicitly using a densitybased solution. The convective heat transfer terms were discriminated based on the secondorder upwind scheme. The nonlinear governing equations were solved using the implicit coupling solver and the standard wall function was used near the wall. Given the threedimensional flow for steam, the equations of mass conservation, momentum, and energy were written. The Realizable model was used to simulate turbulences in the flow.;Results and Discussion;A summary of the results is presented in terms of the results of pressure, velocity magnitude, Mach number and temperature. A general understanding of this characteristic for a thermocompressor is extremely important for recognizing the fluid flow inside it, and it is very useful for practical use. Pressure is the most important factor in the recharge section of a thermocompressor. Increasing the recharge vapor pressure in a thermoscompressor revival the dead steam and increases the steam efficiency. The revival steam can be used in other parts because of their high thermal content. Another important factor in the study of flow behavior inside the thermocouple is velocity magnitude. This quantity, which is closely related to the concept of momentum inside the thermocouple, had high influences from high pressure inputs as well as the thermocompressor geometry. The highest amount of velocity occurs after the initial nozzle and had a very high magnitude (1000 ms1), which was also remarkably high in Monnet 's terms. Another important characteristic of a flow is the temperature of the stream. The high input temperature associated with motive vapor at the outlet of the primary nozzle was sharply reduced, even in some section reached to 110 °Kelvin. Due to the very high flow momentum in this section, the fluid phase remained gas and it can be justified from the point of view of the fluid dynamics.;Conclusions;Considering the importance of thermodynamic properties of steam in conversion and industries, it would be extremely beneficial to fully understand the interactions inside the thermocouple compressor. The importance of the discussed characteristics is more specific when there is a close relationship between each of these factors and energy consumption in a factory or in any industrial production unit. It was observed that the designed thermoscompressor was able to increase the velocity and temperature in a desirable range for the conversion of nonconsumable vapor to the pressure and temperature. It was concluded that the Realizable model due to the prediction of the jet characteristics appearing in the flow regimes for axial symmetry had a high ability to simulate fluid flows inside the thermoscompressor.
Keywords
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved