>
Fa   |   Ar   |   En
   mapping spatial patterns of plant species based on machine-learning and regression models  
   
نویسنده keshtkar hamidreza ,pourmohammad paria
منبع desert - 2022 - دوره : 27 - شماره : 1 - صفحه:167 -181
چکیده    Various statistical techniques have been used for species distribution modeling that attempt to predict the occurrence of a given species with respect to environmental conditions. the current study was conducted to compare the performance of three regression-based models (multivariate adaptive regression splines, generalized additive models, and generalized linear models) with three machine learning algorithms (random forest, artificial neural networks, and generalized boosted models). also in this study, three sets of explanatory variables (climate-only, topography-only and combined topography climate) for each species (i.e. achillea millefolium, festuca rupicola, and centaurea jacea) were quantified and the effect of the interaction of the predictor variables with the modeling approaches on determining the accuracy of the predictions was tested. model accuracy was evaluated using the area under the curve (auc) of the receiver operating characteristics and true skill statistics (tss). it was found that regression-based approaches, especially generalized additive model, performed better than those of machine-learning. the results showed that the topography-climate variables were the most important for mapping potentially suitable habitats of target species. the response curves associated with these variables indicate that there are ecological thresholds for favorable growth of all plant species studied.
کلیدواژه plant distribution; suitable habitats; explanatory variable; data mining
آدرس university of tehran, faculty of natural resources, department of arid and mountainous regions reclamation, iran, university of tehran, faculty of natural resources, department of arid and mountainous regions reclamation, iran
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved