|
|
بررسی پدیده های برگشت آب و پرش هیدرولیکی در پل های تاریخی با دینامیک سیالات محاسباتی
|
|
|
|
|
نویسنده
|
خیاط رستمی بابک ,حسن زاده یوسف ,خیاط رستمی سیامک
|
منبع
|
مهندسي عمران مدرس - 1396 - دوره : 17 - شماره : 3 - صفحه:61 -68
|
چکیده
|
قرار گرفتن پل در آبراهه، مشخصات جریان را تغییر می دهد. اغلب این تغییرات از جزئیات هندسی پل ناشی میشوند. در معماری پلهای تاریخی، قوسهای نیم دایره و جناغی به عنوان هندسه دهانه به کار رفته است. پلهای تاریخی میراث ارزشمندی هستند که شناخت آنها از جنبه تداوم فرهنگی اهمیت دارد. در این تحقیق، تاثیر سه هندسه دهانه مستطیلی، نیمدایره و جناغی بر پدیده های برگشت آب و پرش هیدرولیکی تحت شرایط جریان سطح آزاد و نیمه مستغرق با نرمافزار flow-3d مدلسازی عددی گردید و با نتایج آزمایشگاهی دانشگاه بیرمنگام صحتسنجی شد. تعیین موقعیت سطح آزاد با روش vof و مدلسازی آشفتگی با روش kɛ دو معادله ای انجام پذیرفت. یافته ها نشان داد که هندسه نیمدایره از نظر میزان ایجاد خیزاب و تخریب ناشی از پرش هیدرولیکی در بستر، بر هندسه جناغی برتری دارد. گذشته از عوامل سازه ای و روشهای اجراء، یافتههای تحقیق حاضر را می توان یکی از علل هیدرولیکی تحول هندسه دهانه از فرم جناغی به نیمدایره طی دوره صفویه تا قاجاریه دانست.
|
کلیدواژه
|
برگشت آب، پرش هیدرولیکی، flow-3d، پل های تاریخی، هندسه دهانه
|
آدرس
|
شرکت آب منطقه ای اردبیل, گروه تحقیقات, ایران, دانشگاه تبریز, دانشکده فنی مهندسی عمران, ایران, دانشگاه محقق اردبیلی, ایران
|
|
|
|
|
|
|
|
|
|
|
Study of Backwater and Hydraulic Jump Phenomena in Historical Bridges by Computational Fluid Dynamics
|
|
|
Authors
|
Khaiatrostami Babak ,Hassanzadeh Yousef ,Khaiatrostami Siamak
|
Abstract
|
Establishing a bridge in a waterway changes flow characteristics. Most of these changes derive from geometric details of bridge. Circular and pointed (nested) arches have been used as opening geometry in historical bridges. Historical bridges are valuable heritage and protection of them is important because of cultural continuity. Hydraulic study is a tool to recognize these structures and their design philosophy. In this research, effect of three opening geometry on backwater and hydraulic jump phenomena was numerically studied by Flow3D software. The FLOW3D software was selected because not only previous studies indicated that flow around a bridge as well as in a compound channel involves significant 3D characteristics but also it is a powerful hydraulic engineering design tool to model 3D free surface flows. The performance of FLOW3D was tested using of experimental data obtained from test series which were conducted at the Hydraulic Laboratory, Birmingham University on two opening semi circular bridge model in compound channel (AMOSEC) in which the width of model was 0.10 m. Laboratory tests were carried out for low flow conditions without flow contact with the lower bridge deck (21 to 35 lit/sec). In order to study submerged (High Flow) condition, a program has been developed in the MATLAB environment to extrapolate discharges and related normal depth for 40 to 60 lit/sec discharges. Three opening geometry with the same area as AMOSEC model designed in the AutoCAD. DWG files converted into the Stereolithography format and imported into the Flow3D.The computational domain, 18 m long and 1.213 m wide, was divided into structured grids. This domain involved nonuniform rectangular grids of 950, 100 and 26 to 40 cells in the x, y and zdirections, respectively. Inflow boundary condition was specified as discharge. The downstream boundary condition was specified with a constant fluid height equal to the uniform depth. The sidewalls as well as the channel bottom were defined to be no slip boundaries. On the top, the symmetry (atmospheric) boundary condition was assigned to describe the free surface flow condition. Measured uniform flow depth with zero velocities for each run was assigned to each computational cell to set the initial flow condition. Free surface modeled by VOF and turbulence by two equation Kɛ methods. Then, a total of 27 runs carried out until steady state resulted. The results indicate that pointed arch geometry makes maximum afflux for both low flows (subsoffit) and high flows (supersoffit) conditions in all models. Emerging Location of afflux at longitudinal axis is the same for all of the models. Length of hydraulic jump for pointed arch geometry is maximum under low flow condition and minimum under high flow condition. Hydraulic jump starts near the pier for rectangular opening geometry in comparison with others. Critical shear stress due to hydraulic jump is minimum for rectangular geometry and maximum for pointed arch in all discharge conditions. Circular opening geometry produces less upstream flooding and less possibility of downstream bed destruction, so it has advantages on pointed arch geometry.Out of the structural reasons, whole of these results may be considered as hydraulic reason of evolution of pointed arch to semi circular geometry from Safavid to Qajar era.
|
Keywords
|
Flow3D
|
|
|
|
|
|
|
|
|
|
|