|
|
شبیهسازی محیطهای چند فازی با استفاده از روش ترکیبی bpm-sph
|
|
|
|
|
نویسنده
|
مظهری محسن ,یزدانی محمود ,فخیمی احمد علی
|
منبع
|
مهندسي عمران مدرس - 1398 - دوره : 19 - شماره : 4 - صفحه:187 -200
|
چکیده
|
در مقاله پیش رو نرمافزار کوانتا، که توسط نویسندگان در حال توسعه است، معرفی و راستی آزمایی شده است. این نرم افزار با اهداف پژوهشی و به منظور شبیهسازی دو بعدی محیطهای چند فازی جامد و سیال و به زبان visual c++ نوشته شده است. در این نرم افزار محیط جامد با استفاده از روش مبتنی بر ذره bonded particle method و محیط سیال با استفاده از روش مبتنی بر ذره smoothed particle hydrodynamics شبیهسازی میشوند. رفتار نهایی مدل حاصل اندرکنش ذرات با دیگر ذرات همنوع خود و نیز ذرات متعلق به روش دیگر است. ابتدا درباره تئوری روشها و نحوه استفاده از آنها در نرمافزار توضیح داده شده و در انتها چند مسئله معیار به منظور راستی آزمایی نرمافزار مدلسازی و تحلیل شده و نتایج شبیهسازی با نتایج موجود در مقالات مقایسه شدهاند. برای راستی آزمایی روش bpm از شبیهسازی تغییر شکل یک تیر طره و برای راستی آزمایی روش sph از شبیهسازی مسئله جریان حفرهای و نیز جریان پوازی استفاده شده است. برای راستی آزمایی محیط دوفازی و اندرکنش بین ذرات bpm و sph از مدلسازی یک سیلندر جامد در مسیر جریان استفاده شده است. بررسی نتایج شبیهسازیها نشان دهنده تطابق مناسب آنها با نتایج تحلیلی و تجربی موجود است.
|
کلیدواژه
|
visual c++، مدلسازی عددی، محیط چند فازی، روش ذره مقید، روش هیدرودینامیک ذرات هموار، کوانتا
|
آدرس
|
دانشگاه تربیت مدرس تهران, دانشکده عمران و محیط زیست, گروه ژئوتکنیک, ایران, دانشگاه تربیت مدرس تهران, دانشکده عمران و محیط زیست, گروه ژئوتکنیک, ایران, دانشگاه تربیت مدرس تهران, دانشکده عمران و محیط زیست, گروه ژئوتکنیک, ایران
|
|
|
|
|
|
|
|
|
|
|
Simulation of Multi-Phase Medium Using BPM-SPH Hybrid Method
|
|
|
Authors
|
Mazhary Mohsen ,Yazdani Mahmud ,Fakhimi Ali
|
Abstract
|
The precision and speed of numerical simulations of physical phenomena has led to their increasing use in designing and research applications. These precision and speed are owed to the improvements in numerical methods and significant advancements in computing power of CPUs and GPUs.Particlebased methods are some of the most recently developed numerical simulation methods. Development of these methods has been long delayed due to the need for a relatively high computational effort.Particlebased methods can be considered as a subset of Meshless Methods. In nonlinear computational methods, mathematical equations in the problem domain are estimated only by nodes, and contrary to the case about the nodes in FEM and FDM methods, there is no need for these nodes to be connected to each other by a mesh. If the nodes are particles that carry physical properties, such as mass and stiffness, and simulations proceed on the basis of updating trajectory and physical properties of particles, then the method is called a particlebased method. Particlebased methods include molecular dynamics (MD), Discrete Element Method (DEM), Smoothed Particle Hydrodynamics (SPH), and Lattice Boltzmann Method (LBM). The number of studies and computer codes developed based on these methods has grown dramatically over the past two decades.Among particlebased methods, DEM method is mainly used to model solid objects and fractures and in some cases it has been used to model granular materials like soil. While most of the applications of SPH method include numerical solution of the NavierStokes equations in fluid dynamic problems. Despite their differences, both DEM and SPH methods are particlebased methods and so there have been successful attempts to integrate them into a single application.In current study, a computer code called ldquo;QUANTA rdquo; is introduced. In this software, the researchers have tried to integrate the SPH method with another particlebased method called Bonded Particle Method (BPM). BPM is based on DEM and was originally developed to model rock and soil mechanics phenomena. The main modification applied to DEM is the ability to consider cohesion among particles, which plays a significant role in simulating the behavior of rocks and soils.QUANTA is being developed with the goal of providing a tool to simulate twodimensional solid, fluid, and multiphased interactive environments for research purposes. In this software, the solid environment is modeled using the BPM algorithm and the fluid environment is modeled using the SPH algorithm by solving NavierStokes equations. Depending on the problem at hand, BPM and SPH particles interact with each other by equations based on momentum or pressure. The code is developed using Visual C ++ programming language and has the ability to perform parallel computations with a remarkable speed.To verify the software, a few simple and frequently used problems in the literature were chosen. A cantilever beam was modeled and loaded to verify BPM part of the software. Poiseuille and shear cavity problems were used to verify the SPH part. In order to verify the interaction of these two algorithms, a solid cylinder was modeled once in a wind tunnel travelling at supersonic speeds and then against the flow of a viscous fluid. According to the results of these numerical modellings, the software can be deemed successful in simulating the sample problems.While simulation with particle methods requires more computational effort than common methods such as finite element and finite difference, the particlebased and micromechanical nature of these methods and their ability to model largescale deformations and complex behaviors has, in many cases, made them logical choices for simulation. As the next steps of this study, the authors are developing new equations for interaction and equations of state to improve the software performance.
|
Keywords
|
Numerical Modelling ,Multi-Phase Medium ,Bonded Particle Method ,BPM ,Smoothed Particle Hydrodynamics ,SPH ,QUANTA
|
|
|
|
|
|
|
|
|
|
|