پیش بینی سطح سازگاری نوجوانان بر اساس ویژگیهای روانشناختی با استفاده از مدلهای رگرسیون و شبکه های عصبی مصنوعی
|
|
|
|
|
نویسنده
|
پورشهریار حسین
|
منبع
|
اندازه گيري تربيتي - 1392 - دوره : 4 - شماره : 14 - صفحه:89 -110
|
چکیده
|
زمینه: پژوهش حاضر یک بررسی در رابطه با ویژگیهای روانشناختی نوجوانان و سطوح سازگاری آنها میباشد. با توجه به مبانی نظری در مورد روابط متقابل بین این مفاهیم از یک مدل سنتی مبتنی بر همبستگی و یک مدل نوین مبتنی بر پردازش موازی دادهها استفاده شده است. هدف: هدف از پژوهش حاضر بررسی توانمندی هر یک از مدلهای یاد شده در پیشبینی سطوح سازگاری از طریق اندازههای مربوط به ویژگیهای روانشناختی نوجوانان است. روش: دادههای اولیه مربوط به 18 ویژگی روانشناختی و 5 سطح سازگاری از طریق اجرای آزمونهای cpi و aiss بر روی 456 دانشآموز پسر دبیرستانی شهر تهران به دست آمد. از مدلهای همبستگی و تحلیل عاملی به منظور استخراج مولفه-های اصلی، به عنوان عوامل پیش بینی کننده استفاده شد. بر این اساس یک ترکیب چهار عاملی از ویژگیهای روانشناختی و پنج ویژگی مستقل به عنوان ترکیب بهینه در پیشبینی سطوح سازگاری با قابلیتی معادل ترکیب اولیه هجده عاملی شناسایی شدند. همچنین با توجه به انبوه عوامل اثرگذار و پیچیدگیهای موجود در روابط میان آنها از مدل شبکههای عصبی مصنوعی نیز برای پیش بینی استفاده شد و توانمندی آن با مدل رگرسیون مورد مقایسه قرار گرفت. یافتهها: یافته ها نشان داد که مدل شبکههای عصبی مصنوعی در پیشبینی پنج سطح سازگاری توانمندتر از مدل رگرسیون میباشد و در صورت کاهش تعداد سطوح سازگاری به سه سطح، این قابلیت به نفع مدل رگرسیون تغییر میکند (0.001? < ). بحث و نتیجهگیری: بر این اساس ویژگیهای منحصر به فرد شبکه های عصبی مصنوعی نظیر پردازش موازی و تشخیص الگوهای ارتباط غیرخطی و پیچیده از طریق یادگیری و تجربه و قابلیت اختصاصی مدل رگرسیون در پیشبینی بر اساس اولویت بندی نقش هر یک از عوامل پیش بینی کننده از عوامل اصلی موفقیت هر یک از آنها تلقی میشود.
|
کلیدواژه
|
ویژگیهای روانشناختی ,سازگاری ,پیشبینی ,رگرسیون
|
آدرس
|
دانشگاه شهید بهشتی, ایران
|
|
|
|
|
|
|