>
Fa   |   Ar   |   En
   تجزیه پایداری عملکرد دانه در ژنوتیپ‌های گندم دوروم (Triticum Turgidum L. Var. Durum) در شرایط مختلف اقلیمی با استفاده از مدل Ammi  
   
نویسنده مویدی علی اکبر ,نجفی میرک توحید ,احمدی غلام حسین ,قندی اکبر
منبع بوم شناسي كشاورزي - 1399 - دوره : 12 - شماره : 3 - صفحه:359 -371
چکیده    هدف از این پژوهش تجزیه اثر متقابل ژنوتیپ×محیط بر عملکرد دانه 18 لاین گندم دوروم (triticum turgidum l. var. durum) با استفاده از تجزیه مدل اثر اصلی افزایشی و ضرب‌پذیر امی (ammi) و نیز ارزیابی ژنوتیپ‌ها، محیط و اثر متقابل آنها با استفاده از آماره‌های پایداری و اکووالانس ریک بود. آزمایشات در سه ایستگاه تحقیقات کشاورزی کرج، نیشابور و کرمانشاه طی سال‌های 96-1394 به مدت دو سال زراعی اجرا شدند. نتایج حاصل از تجزیه امی بر عملکرد دانه نشان داد که اثر اصلی سال و مکان و اثر متقابل آنها با ژنوتیپ و همچنین دو مولفه اول اثر متقابل معنی‌دار بودند. نمودار بای‌پلات امی قادر به تفکیک ژنوتیپ‌های پایدار و محیط‌های با قدرت تفکیک بالا از محیط‌های ضعیف بود. نتایج نشان داد که محیط کرج طی هر دو سال زراعی بیشترین نقش را در ایجاد اثر متقابل ژنوتیپ×محیط دارا بود؛ در حالی که محیط نیشابور طی هر دو سال زراعی پایدارترین محیط بود و کمترین نقش را در ایجاد اثر متقابل ژنوتیپ×محیط داشت. همچنین محیط کرمانشاه طی سال زراعی 96-1395 مشابه کرج و در سال زراعی 95-1394 مشابه محیط نیشابور عمل کرد. بر اساس نتایج، ژنوتیپ‌های 17 و 18 ناپایدارترین ژنوتیپ‌ها تشخیص داده شدند. همچنین در مجموع، سال‌ها و سه منطقه، ژنوتیپ 16 دارای قدرت پایداری بالا و عملکرد مطلوب در محیط‌های مورد مطالعه بود.
کلیدواژه اثر متقابل ژنوتیپ×محیط، پایداری، ژنوتیپ برتر
آدرس سازمان تحقیقات، آموزش و ترویج کشاورزی, مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی خراسان رضوی, بخش تحقیقات علوم زراعی و باغی, ایران, سازمان تحقیقات، آموزش و ترویج کشاورزی, موسسه تحقیقات اصلاح و تهیه نهال و بذر, بخش تحقیقات غلات, ایران, سازمان تحقیقات، آموزش و ترویج کشاورزی, مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی کرمانشاه, بخش تحقیقات علوم زراعی و باغی, ایران, سازمان تحقیقات، آموزش و ترویج کشاورزی, مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی اصفهان, بخش تحقیقات علوم زراعی و باغی, ایران
 
   Stability Analysis of Seed Yield in Durum Wheat Genotypes (Triticum turgidum L. var durum) using AMMI Analysis  
   
Authors Ghandi Akbar ,Moayyedi Ali Akbar ,Ahmadi Gholam Hissein ,najafi mirak tohid
Abstract    Introduction[1]Durum wheat (Triticum turgidum L. var durum) consists of only 5% of the world’s total cultivated wheat area and contributes about 10% to the total global wheat production. In recent years, the production level of durum wheat has risen to more than 30 million tons and EU, USA and Canada together representing 60% of the production. Durum wheat in Iran is grown on 300400 thousand hectares with an average annual production of 500600 thousand tons. Increase in yield is one of the primary aims pursued in plant breeding programs. Similar to other crops, insufficient yield stability in durum wheat is recognized as a one of the factors responsible for the gap between actual yield and potential yield. In breeding programs, the identification of superior genotypes is difficult due to environmental variability of target locations and the interaction of these variability with the investigated genotypes. Therefore, it is important to evaluate the advanced agronomic lines across various environments and over multiple years to ensure their yield stability and production. Many statistical models have been suggested to analyze G×E interaction. The additive main effects and multiplicative Interaction (AMMI) model is a multivariate statistical method that entirely justifies genotype and environment main effects as well as multiplicative G×E interaction effects. This method provides a clear interpretation of G×E interaction effect. The objectives of this study were to analyze genotype by environment (GE) interactions on the seed yield of some durum wheat lines by AMMI model and to evaluate genotype (G), environment (E) and genotype× environment (GE) interactions using statistics parameter i.e. AMMI stability value (ASV) and ecovalence (W2i). Materials and MethodsSixteen promising durum wheat lines (G1G16) along with two check cultivars (durum wheat cv. Hana and bread wheat cv. Parsi), were investigated for two cropping seasons (20152016 and 20162017) at three Agricultural Research Stations (such as Karaj, Kermanshah and Neishabour cities) The experimental design at all locations was a randomized complete block design with three replications. Some agronomic attributes such as the number of days until anthesis stages, plant height, number of days till physiological maturity, 1000kernel weight and grain yield were determined for each genotype. However, only the grain yield data was used to analyze G×E interactions. Combined analysis of variance for grain yield was performed using ADELR software. The GGE Biplot methodology was employed to analyze G×E interaction. The AMMI M model was used for the following purposes; (i): Evaluation of yield stability, (ii): The simultaneous selection for yield and stability, (iii): Identification of ideal durum wheat genotypes, and (iv): Assessment of the characteristics of and relationships among the testing environments.  Results and DiscussionThe combined analysis of variance showed that the main effects of year and location were significant at 1% probability level, while the main effect of genotype had not significant. Genotype× year interaction and triple genotype × year × location interaction were significant at 1% probability level and also genotype × location interaction was significant at 5% probability level, indicating genotype × environment interaction. The results of AMMI ANOVA showed that about 86.5% of total variation was related to environment effect, 1.4% to genotype effect and 12.1% to genotype× environment interaction. Overall, the average grain yield of the evaluated lines ranged from 7.6 to 8.4 t.ha1 and the G18 and G2 lines had the lowest and highest grain yield, respectively. Main effect due to environment and genotype × environment interaction as well as two first interaction principal components (IPCA12) were found to be significant, indicating that the agroclimatic environmental conditions were different, and that there was a differential response of the genotypes to the environments. The first two IPCA components of the GE interaction explained about 70.2% of the GE interaction. According to IPCA1, G9, G15 and G16 had the lowest scores and were the most stable genotypes whereas G17 and G18 with the highest scores were found to be unstable. The lowest ASV was observed for G16 that was the most stable genotype whose mean yield was higher than the grand mean. However, the highest ASV scores were achieved by G17 and G18. AMMI Biplot was used to visualize mean seed yield performance and stability of durum wheat genotypes. AMMI Biplot was able to distinguish stable genotypes with broad sense and narrow sense adaptation and environments with high and low genotype discrimination ability. The genotype G16 with higher seed yield than the total mean were the most stable genotypes, while the genotypes G17 and G18 with the highest contribution to GE interaction were the most unstable genotypes. Wricke’s ecovalence stability parameter (W2i) showed that the genotypes G16, G12, G5 and G4 were the most stable genotypes. ConclusionThe results indicated that AMMI model and their biplots was an appropriate method for simultaneous selection of performance and stability of cultivars and lines. Also, according to all of methods, genotype G16 was selected as a stable and high genotype across all environments. Finally, it can be considered as a favorite promising line compared to the check cultivar Hana and as a candidate in the temperate climate.
Keywords
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved