>
Fa   |   Ar   |   En
   بهبود ساختار الگوریتم یادگیری عمیق در پردازش تصویر باالهام از ماتریس تفکیک پذیری مغز  
   
نویسنده حیدران داروقه امنیه زهرا ,رستگار فاطمی محمد جلال ,رستگارپور مریم
منبع روش هاي هوشمند در صنعت برق - 1399 - دوره : 11 - شماره : 44 - صفحه:71 -89
چکیده    الگوریتم های آموزش عمیق در بسیاری از مسائل بازشناسی الگو، نتایجی در سطح انسان و یا بهتر می توانند به ثبت رسانند. اما این نتایج با مکانیسمی متفاوت از مغز انسان به دست آمده است. مدل پیشنهادی در این مقاله یک الگوریتم تقسیم بندی و درون یابی با الهام از مغز انسان را توصیف نموده و بعد از لایه ورودی، لایه‌ی شبکیه اعمال ‌شده است که به پیروی از شبکیه چشم، عمل رمزنگاری بر روی تصویر ورودی را انجام می‌دهد. سپس تصویر ورودی به فضای ثانی انتقال می‌یابد که تلاش برای تغییر ساختار شبکه عمیق با الهام از مسیر بینایی مغز خواهد بود. بازخورد شبکه، نرخ بازشناسی و سطح انرژی شبکه و یا جامعیت شبکه ی آموزش دیده در زیرمجموعه هایی از مجموعه داده کلتک بررسی می گردد. در نمونه های مشابه الگوریتم های آموزش عمیق برای یادگیری نیاز به داده بیشتری در مقایسه با یادگیری انسان دارد. بعلاوه، اختلاف یادگیری عمیق و انسان، تفاوت در بازنمایش اطلاعات است. در یادگیری عمیق وزن ها در جهتی بهبود می یابند تا در یک آزمایش خاص نتیجه بهینه شود ولی در انسان با میلیون ها سال تکامل، مغز انسان به گونه ای تکامل یافته تا بازنمایش بهینه و موثر باشد. چالش مورد بررسی دیگر، عمیق تر شدن لایه های یادگیری عمیق است. تعداد این لایه ها نسبت به مغز چندین برابر گشته است و این مسئله منجر به پیچیدگی و صرف انرژی بیشتر می شود. اما در مغز با صرف انرژی کمتر می تواند تشخیص را انجام دهد. بیشینه نرخ بازشناسی مدل پیشنهادی به 93 درصد می رسد و مدل پایه نزدیک به 91 درصد است. همچنین مدل پیشنهادی تنک‌تر و نرخ آتش نورون ها در لایه های ابتدایی کمتر و پایداری بالایی به تغییرات شدت روشنایی داشته، تفکیک پذیری در لایه های مدل بالاتر رفته و توانسته در مواجهه با تصاویر نویزی پاسخ بهتری نشان دهد و افت بازشناسی کمتری را ثبت کند.
کلیدواژه یادگیری عمیق، سیستم کانولوشنی، نرخ بازشناسی، فیلتر دیفرانسیلی گوسی، سطح انرژی شبکه، پراکندگی، ماتریس تفکیک پذیری مغز
آدرس دانشگاه آزاد اسلامی واحد ساوه, دانشکده فنی و مهندسی, گروه برق, ایران, دانشگاه آزاد اسلامی واحد ساوه, دانشکده فنی و مهندسی, گروه برق, ایران, دانشگاه آزاد اسلامی واحد ساوه, دانشکده فنی و ممهندسی, گروه کامپیوتر, ایران
پست الکترونیکی m.rastgarpour@iau-saveh.ac.ir
 
   Improving the Structure of Deep Learning Algorithm in Image Processing Inspired by Representational Brain Dissimilarity Matrix  
   
Authors Heydaran Daroogheh Zahra ,Rastegar Fatemi Mohammad Jalal ,Rastgarpour Maryam
Abstract    Deep learning algorithms achieves some results at human level or even better in pattern recognition problems. Meanwhile they apply a different mechanism other than human brain. This paper describes a humaninspired segmentation and interpolation algorithm, which applies the retinal layer in the proposed model after the input layer. Following this retina, this layer encrypts the input image and transmits the input image to the second space, which try to change deep network structure inspired of the brain’s visual path. Network feedback, recognition rate, and network energy level or the comprehensiveness of the trained network examined in subsets of the Caltech data set. In similar examples, deep learning algorithms require more data to learn other than human. In the difference between deep learning and human, there is a difference in the representation of information. In deep learning, weights improve in a way that optimizes the result in a particular experiment, but in millions of years of human evolution, the human brain has evolved optimally and effectively representation. Another point of contention is the deepening of deep learning layers. The number of these layers has multiplied compared to the brain that lead to more complexity and energy expenditure. However, in the brain it can make a diagnosis with less energy. The maximum recognition rate of the proposed model is 93% and the base model is close to 91%. Also, the proposed model is thinner and the rate of fire of neurons in the initial layers is lower and has a high stability to changes in light intensity. The Dissimilarity of the model layers has been higher and it has been able to show a better response in the face of noise images and record less recognition loss.
Keywords
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved