>
Fa   |   Ar   |   En
   بررسی دقت برخی از مدل‌ها در برآورد ضرایب آزمون تولید گاز در سیلاژ ذرت  
   
نویسنده زابلی خلیل ,کلوندی سارا ,ملکی مصطفی
منبع پژوهشهاي علوم دامي ايران - 1399 - دوره : 12 - شماره : 4 - صفحه:467 -479
چکیده    به منظور پیش بینی کینتیک تخمیر شکمبه ای سیلاژ ذرت در زمان های صفر، 30 و 60 روز پس از سیلو کردن، از تعداد چهار مدل غیر خطی استفاده شد. برای این منظور، داده های تولید گاز در طول 144 ساعت انکوباسیون با استفاده از مدل های نمایی (exp)، لجستیک (log)، گومپرتز (gom) و فیزو (fzh) برازش شدند. نکویی برازش مدل ها با استفاده از آماره های میانگین مربعات خطا (mse)، ضریب تعیین (r2)، انحراف مطلق میانگین باقیمانده (rmad) و میانگین درصد خطا (mpe) انجام شد. از آزمون های دوربینواتسون (dw)، آزمون اجرا و رگرسیون خطی به منظور بررسی دقت مدل ها استفاده شد. نتایج نشان داد مدل ها از نظر پیش بینی پتانسیل تولید گاز (a) تفاوت معنی داری با هم نداشتند. مدل exp دارای بیشترین مقدار mse (29.50) و کمترین مقدار r2 (0.961) در بین مدل ها بود. مقدار rmad در مدل gom و fzh کمترین (به ترتیب 2.591 و 2.879) و در مدل exp بیشترین (3.807) مقدار بود (0.05p <). در مدل exp مقدار mpe 5.527 به دست آمد که تفاوت معنی داری با سایر مدل ها داشت (0.05p <). در مدل exp آماره dw به عدد صفر نزدیک تر بود (0.392) که نشان دهنده ضعف مدل exp در برازش داده ها در مقایسه با سایر مدل ها بود. بررسی رابطه رگرسیون خطی نشان داد که مدل های fzh و log پیش بینی بهتری از پروفیل تولید گاز داشتند. به طور کلی نتایج نشان داد مدل های gom و fzh جهت پیش بینی کینتیک تخمیر شکمبه ای سیلاژ ذرت از دقت بیشتری در مقایسه با مدل exp برخوردار بودند.
کلیدواژه روش آزمون تولید گاز، کینتیک تخمیر شکمبه، مدل‌های غیر خطی و نکویی برازش
آدرس دانشگاه بوعلی سینا, دانشکده کشاورزی, گروه علوم دامی, ایران, دانشگاه بوعلی سینا, دانشکده کشاورزی, گروه علوم دامی, ایران, دانشگاه بوعلی سینا, دانشکده کشاورزی, گروه علوم دامی, ایران
 
   The Accuracy of some Models to Estimate the Coefficients of Gas Production Test in Corn Silage  
   
Authors Zaboli Khalil ,Kalvandi sara ,Maleki Mostafa
Abstract    Introduction[1]In vitro gas production technique is one of the methods used for evaluating ruminal fermentation kinetic of feedstuffs. In this method, the volume of gas produced during the incubation is presented as a curve. The mathematical description of gas production profile is performed by fitting data set to a nonlinear model. Recently, several nonlinear models have been developed to estimate gas production profile however, some of these models are not accurate enough. Therefore, the aim of this study was to investigate the accuracy of some nonlinear models for predicting ruminal fermentation kinetic of a forage feed. Materials and methods In this experiment, corn silages (samples on 0, 30 and 60 days after ensiling) were used as fermentation substrates.  Dry matter and chemical composition (organic matter, crude protein, NDF and ADF) of the samples were determined using standard methods. The rumen fluid was obtained from three fistulated rams before the morning feeding. The collected ruminal fluids were pooled and transferred into a flask to the laboratory. The rumen fluid was filtered through four layers cheesecloth, flushed continuously with CO2 and maintained at 39oC before incubation. The rumen fluid was then mixed with buffered mineral solution at the ratio of 1:2 (V/V). Gas production technique was completed in three separate runs on three different days (each run lasted 6 days). In each run, the samples were incubated in triplicate and two vials (without the substrate) were considered as the blanks. The volume of gas produced was measured at 0, 2, 4, 6, 8, 12, 16, 20, 24, 48, 72, 96,120 and 144 hours of incubation. The prediction of the gas volume at different times of incubation was compared by four nonlinear models and results were expressed in ml per 200 mg of DM incubated. The selected models (experimental treatments) included Exponential (EXP), Fitzhugh (FZH), logistic (LOG) and Gompertz (GOM). The goodness of fit of the models were evaluated using mean square error (MSE), coefficient of determination (R2), residual mean absolute deviation (RMAD) and mean percentage error (MPE). In addition, DurbinWatson test (DW), run test and linear regression analysis (between observed and predicted values of the gas volume at different incubation times) were used to assess the accuracy of the models in fitting the data. The estimated ruminal fermentation parameters (the asymptotic gas volume and gas production rate) and goodness of fit parameters obtained from each model (MSE, R2, RMAD and MPE statistics) were analyzed using completely randomized design. Results The studied models had no difference in terms of predicting asymptotic gas volume (A) on 0, 30 and 60 days after ensiling and the value of parameter A predicted by the models were in the range of 98.37 (for GOM model on day 0) to 76.09 (for LOG model on day 60) ml per 200 mg DM. The EXP and LOG models had the highest and lowest MSE and R2 values, respectively, indicating their lower accuracy compared with GOM and FZH models. The RMAD value was lowest in GOM and FZH models (2.591 and 2.879, respectively) and was highest in EXP model (3.807). The RMAD value is used as an indicator for evaluating the goodness of fit of models. the lower values of RMAD (closer to zero), represents a better ability of the model in fitting data. Based on these results, GOM and FZH models had a higher accuracy than EXP model in fitting data. The MPE value in the EXP model (5.527) was significantly higher than the other models (p < 0.05). In other words, the predicted values (the volume of gas produced at different times of incubation) by the EXP model were lower than the observed values (it was underestimated). Based on Durbin Watson (DW) test results, the DW statistics in the EXP, FZH, GOM and LOG models were 0.392, 0.691, 0.705 and 0.675, respectively, indicating that EXP and GOM models had the lowest and highest accuracy, respectively, in predicting the rumen fermentation kinetic of corn silage. According to the run test, all the curves in EXP model had the lowest run (3 ≥) implying a poor performance of EXP model in predicting the results. The linear regression between the observed versus predicted values (regression parameters) showed a significant difference between intercept with 0; and slope with 1 in all the studied models (p < 0.05). However, based on the goodness of fit parameters obtained from the linear regression, FZH and GOM models had a better prediction of the gas production profile. Conclusion The EXP model had lower accuracy in predicting the rumen fermentation kinetic of corn silage compared with the other studied models. It is recommended that other nonlinear models be used in addition to the EXP model for investigating the ruminal fermentation kinetics of corn silage.
Keywords
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved