|
|
ژئوشیمی، خاستگاه و دمایی آناتکسی تشکیل مونزوگرانیت خلج (مشهد، ایران)
|
|
|
|
|
نویسنده
|
صمدی رامین ,ترابی قدرت ,میرنژاد حسن
|
منبع
|
زمين شناسي اقتصادي - 1400 - دوره : 13 - شماره : 1 - صفحه:145 -164
|
چکیده
|
سنگهای مونزوگرانیتی گروهی از گرانیتوئیدهای مشهد با سن مزوزوئیک هستند که در منطقه خلج (واقع در جنوب شهر مشهد) رخنمون دارند. این سنگها دارای کانیهای کوارتز، پتاسیم فلدسپار، پلاژیوکلاز، میکا و کانی های فرعی زیرکن و آپاتیت هستند. از دیدگاه ژئوشیمیایی، در مونزوگرانیت خلج میزان کم hree و میزان بالای lree و lile نشاندهنده درجات بالای تفریق مذاب مولد آن است. بنابراین، مونزوگرانیت خلج از گروه گرانیتوئیدهای فروئن، آلکالی کلسیک، پرآلومین، فلسیک نوع s و محصول ذوببخشی رسوبات پوسته بالایی در دمای نزدیک به 730 تا 800 درجه سانتیگراد است. دماهای اشباعشدگی ماگما از زیرکنیم هنگام تشکیل زیرکن کمتر از 800 (تقریباً 732 تا 745) درجه سانتیگراد محاسبهشد. با فرورانش پالئوتتیس زیر ورقه توران و برخورد قارهای، پوسته بالایی در اثر فرایندهای زمینساختی فشاری دچار ذوببخشی شده و تودههای نفوذی مونزوگرانیتی همزمان با برخورد تا پسابرخوردی نوع s خلج تشکیل شدهاند.
|
کلیدواژه
|
سنگ نگاری، ژئوشیمی، مونزوگرانیت، مزوزوئیک، خلج، مشهد
|
آدرس
|
دانشگاه اصفهان, دانشکده علوم, گروه زمینشناسی, ایران, دانشگاه اصفهان, دانشکده علوم, گروه زمینشناسی, ایران, دانشگاه تهران, دانشکده علوم, گروه زمینشناسی, ایران
|
|
|
|
|
|
|
|
|
|
|
Geochemistry, origin and anatexis temperature of monzogranite formation in Mount Khalaj (Mashhad, Iran)
|
|
|
Authors
|
Samadi Ramin ,Torabi Ghodrat ,Mirnejad Hassan
|
Abstract
|
IntroductionGranitoids are the main rock units in the continental crust. Study of granitoids reveals significant information on tectonic mantle and upper crust. Many researchers have investigated petrogenesis and origin of granitoids (e.g., Chappell and White, 2001; Barbarin, 1999; Frost et al., 2001). For example, Chappell and White (1992), Pitcher (1993) and Chappell et al., (1998) have divided granites into two major groups of: (1) Itype granites (hightemperature or Cordellerian granitoids, including lowK granitoid to highCa tonalite, without inherited zircons) formed by partial melting of mafic rocks at >1000 ℃ in mantle or subduction zones of continental margins, and (2) Stype (lowtemperature or Caledonian granitoids with inherited zircons) granites formed by partial melting of felsic crust at ~700800 ℃. Northeast of Iran is a key location for studying the Cimmerian Orogeny, which is related to the Late Triassic collision between it and Eurasia, and the closure of the PaleoTethys (Samadi et al., 2014). Mesozoic Mashhad granitoids have cropped out along with the PaleoTethys suture zone. Distinct granitoid suites, i.e., monzogranite, granodiorite, tonalite, and diorite occur in Mount Khalaj located in the south of Mashhad. It comprises of monzogranite and granodiorite. However, monzogranite is the most abundant. To study the plutonic events during the Turan and Central Iran collision, the origin and tectonic setting of monzogranite of Mount Khalaj are investigated in this study based on whole rock geochemical data. Materials and methodsThis research study is based on field studies and petrography. Fresh thin sections samples were selected for geochemical analysis. Whole rock composition was measured on pressed powder tablets by Xray fluorescence (XRF) using a Philips PW 1480 wavelength dispersive spectrometer with a Rhanode Xray tube and a 3 MeV electron beam Van de Graaff Accelerator, at the center for Geological Survey of Iran. The trace element data of a sample was measured at the Activation Laboratories, Ontario, Canada (ActLabs). Samples were digested by lithium metaborate/tetraborate fusion and analyzed with a Perkin Elmer Sciex ELAN 6000, 6100 or 9000 ICP/MS. GCDkit 4.1 and CorelDraw software packages were used for plotting diagrams and calculation of saturation temperatures. ResultsThe Khalaj granitoid is mineralogically composed of quartz, potassic feldspar, plagioclase, mica, and accessory minerals of zircon and apatite. Geochemically, it is an unaltered acidic intrusion with ~7273 wt.% SiO2. It is a granitoid (monzogranite) based on various classification diagrams (e.g., Cox et al., 1979; etc.). It shows the peraluminous nature (A/CNK~ 1.081.24) with negative Eu anomaly of ~0.620.73 (Eu/Eu*<1), low HREE and high LREE and LILE contents. DiscussionGeochemically, the low HREE and high LREE and LILE content in the Mount Khalaj monzogranite indicate a more differentiated melt for it. Monzogranite samples from the KhalajKhajeh Morad regions are similar to ferroan alkalicalcic, felsic peraluminous Stype granitoids based on discrimination diagrams by various researchers (e.g., Chappell and White, 2001; Villaseca et al., 1998). In fact, the Mount Khalaj monzogranite is a collisional granite (based on diagrams by: Batchelor and Bowden, 1985; Sahin et al., 2004), produced by anatexis and partial melting of felsic upper crust pelitic sediments (based on diagrams by: Almeida et al., 2007; Patiño Douce, 1999). It is classified as a lowtemperature Stype granite formed at 730800 ℃ (based on the diagram of Rapp and Watson, 1995), with TZr of ~732745 ℃ (by using GCDKit software). Therefore, Stype syn to postcollisional Mount Khalaj monzogranite is a consequence of partial melting (anatexis) of hydrous sedimentary rocks of upper crust after PaleoTethys subduction under Turan plate and continental collision and compressional tectonism. ReferencesAlmeida, M.E., Macambira, M.J.B. and Oliveira, E.C., 2007. Geochemistry and zircon geochronology of the Itype highK calcalkaline and Stype granitoid rocks from southeastern Roraima, Brazil: Orosirian collisional magmatism evidence (1.971.96 Ga) in central portion of Guyana Shield. Precambrian Research, 155(1–2): 69–97. https://doi.org/10.1016/j.precamres.2007.01.004Barbarin, B., 1999. A review of the relationships between granitoid types, their origin and their geodynamic environments. Lithos, 46(3): 605–626. https://doi.org/10.1016/S00244937(98)000851Batchelor, R.A. and Bowden, P., 1985. Petrogenetic interpretation of granitoid rocks series using multicationic parameters. Chemical Geology, 48(1–4): 43–55. https://doi.org/10.1016/00092541(85)900348Chappell, B.W. and White, A.J.R. 2001. Two contrasting granite types: 25 years later. Australian Journal of Earth Sciences, 48: 489–499. https://doi.org/10.1046/j.14400952.2001.00882.xChappell, B.W. and White, A.J.R., 1992. I and Stype granites in the Lachlan fold belt. Earth and Envioronmental Sciennce Transactions of The Royal Society Edinburgh, 83(1–2): 1–26. https://doi.org/10.1017/S0263593300007720Chappell, B.W., Bryant, C.J., Wyborn, D., White, A.J.R. and Williams, I.S., 1998. High and lowtemperature Itype granites. Resource Geology, 48(4): 225–236. https://doi.org/10.1111/j.17513928.1998.tb00020.xCox, K.G., Bell, J.S. and Pankhurst, R.J., 1979. The interpretation of igneous rocks. Allen and Unwin, London, 450 pp. https://doi.org/10.1007/9789401733731Frost, B.R., Barnes, C.G., Collins, W.J., Arculus, S.R.J., Ellis, D.J. and Frost, C.D., 2001. A geochemical classification for granitic rocks. Journal of Petrology, 42(11): 2033–2048. https://doi.org/10.1093/petrology/42.11.2033Patiño Douce, A.E., 1999. What do experiments tell us about the relative contributions of crust and mantle to the origins of granitic magmas? Geological Society, London, Special Publication, 168: 55–75. https://doi.org/10.1144/GSL.SP.1999.168.01.05Pitcher, W.A.S., 1993. The nature and origin of granite. Chapman and Hall, London, 321 pp. https://doi.org/10.1007/9789401158329Rapp, R.P. and Watson, E.B., 1995. Dehydration melting of metabasalt at 8–32 kbar: Implications for continental growth and crustmantle recycling. Journal of Petrology, 36(4): 891–931. https://doi.org/10.1093/petrology/36.4.891Sahin, S.Y., Güngör, Y. and Boztuğ, D., 2004. Comparative petrogenetic investigation of Composite Kaçkar Batholith granitoids in Eastern Pontide magmatic arcNorthern Turkey. Earth, Planet and Space, 56(4): 429–446. https://doi.org/10.1186/BF03352496Samadi, R., Mirnejad, H., Kawabata, H., Valizadeh, M.V., Harris, C. and Gazel, E., 2014. Magmatic garnet in the Triassic (215 Ma) Dehnow pluton of NE Iran and its petrogenetic significance. International Geology Review, 56(5): 596–621. https://doi.org/10.1080/00206814.2014.880659Villaseca, C., Barbero, L. and Herreros, V., 1998. A reexamination of the typology of peraluminous granite types in intracontinental orogenic belts. Earth and Envioronmental Sciennce Transactions of The Royal Society Edinburgh, 89(2): 113–119. https://doi.org/10.1017/S0263593300007045
|
Keywords
|
|
|
|
|
|
|
|
|
|
|
|