>
Fa   |   Ar   |   En
   کانه زایی، شیمی کانه ها و ایزوتوپ های پایدار گوگرد در اندیس طلای چالداغ (شمال تکاب): شواهدی برای دستیابی به سازوکار تشکیل طلا  
   
نویسنده بیگدلی رویا ,طالع فاضل ابراهیم ,معانی جو محمد
منبع زمين شناسي اقتصادي - 1400 - دوره : 13 - شماره : 1 - صفحه:85 -111
چکیده    منطقه اکتشافی چالداغ با عیار متوسط 4.5 گرم در تن به‌عنوان یکی از اندیس های پرعیار کانسار زرشوران، در شمال تکاب واقع‌شده است. از لحاظ ساختاری این منطقه در غرب گسل رانده قینرجه و طاقدیس ایمان خان (راستای nw) قرار دارد و واحد کربنات آهن دار چالداغ به سن نئوپروتروزوئیککامبرین بالایی، سنگ میزبان اصلی کانه زایی است. طبق شواهد ریزکاوالکترونی، طلا به‌صورت محلول جامد با کاتیون au+ و محتوای 10 تا 80 گرم در تن (ppm) در ترکیب کانه آرسنین پیریت با فرمول (fe2+as3+)s2au2.s0 تمرکز دارد. شواهد ایزوتوپ پایدار گوگرد بر روی کانه های سولفیدی رالگار و پیریت گویای مقادیر δ34scdt بین 3.5 تا ‰ 6.5 (متوسط ‰ 5 در تعداد 6 نمونه)، است. با توجه به مقادیر fes mol% اسفالریت ، تغییرات logfs2 در اندیس چالداغ بین 14 تا 16 به‌دست آمد که منطبق با شرایط سولفیداسیون متوسط است. طبق شواهد به‌نظر می رسد در اندیس طلای چالداغ، سیال گرمابی غنی از h2s هم‌ زمان با فرایند کربنات زدایی و آزاد‌شدن مقادیر بالای fe2+ و as3+ در محیط، با این کاتیون ها واکنش داده و آرسنین پیریت تشکیل‌ شده است. در پی این فرایند، ضمن کاهش محتوای h2s محیط، کمپلکس های بی سولفیدی au(hs)2– تحت شرایط خنثی تا اسیدی و ماهیت اکسیدی محیط ناپایدار شده و به دنبال آن ته‌نشینی طلا رخ‌داده است.
کلیدواژه آرسنین پیریت، شیمی کانه، ایزوتوپ گوگرد، طلا، اندیس چالداغ، زرشوران
آدرس دانشگاه بوعلی سینا, دانشکده علوم, گروه زمین‌شناسی, ایران, دانشگاه بوعلی سینا, دانشکده علوم, گروه زمین‌شناسی, ایران, دانشگاه بوعلی سینا, دانشکده علوم, گروه زمین‌شناسی, ایران
 
   Mineralization, ore mineral chemistry and sulfur stable isotopes at the Chaldaq gold prospect (north Takab): evidence for gold formation mechanism  
   
Authors Bigdeli Roya ,Tale Fazel Ebrahim ,Maanijou Mohammad
Abstract    Introduction The TakabAngouran ore field, one of the Iran’s largest gold districts, is located in northwestern Zagros and belongs to the northwestern part of the SanandajSirjan Zone. This area has a dominant NWSE structural trend and is spatially associated with the SanandajSirjan zone. Its geological and petrological characteristics seem to have closer affinities to the Central Iran zone. There are no chronological data on the ultramafic rocks or associated amphibolites, granulites and calcsilicates of the Takab area and the petrogenesis of the ultramafic rocks and their tectonic relations with other parts of the metamorphic complex are unclear. A NeoproterozoicLower Cambrian age for the protoliths of TakabAngouran ore field seems likely, in view of comparable lithology, stratigraphy and geochronology with the Central Iran zone. The Chaldaq gold prospect is located in the TakabAngouran ore field, NW Iran, within Iman Khan NWtrending anticline. The rock units at the mining area mainly consist of Precambrian sequence (Iman Khan schist, Chaldaq limestone and Zarshuran black shale) overlain by CambroOrdovician limestone and OligoMiocene Qom Formations (Mehrabi et al., 1999). The gold mineralization in the Chaldaq prospect is hosted by Chaldaq carbonaceous sedimentary rocks. Two major sets of faults which were recognized by Mehrabi et al., 1999 at the Zarshuran mine are: 1) northwest (310–325) and 2) southwest (255–265). Herein, we report on the textural, paragenetic relationships, mineral chemistry and sulfur isotopes of the Chaldaq prospect. This study is focused on: (1) documenting the chemical composition of different sulfides, (2) determining the chemical state of gold in iron sulfides, (3) determining the sulfur activity, and (4) source of sulfur.   Materials and methods About 70 rock samples were collected from various parts of the deposit for determinations of mineralogy, mineral texture, mineral chemistry and sulfur isotope. The polished thin sections were carbon coated and analyzed on a Camera SX100 electron microprobe at the Iranian Mineral Processing Research Center (IMPRC), Karaj. The detection limits for major and minor elements are approximately 0.05 and 0.01 wt.%, respectively. Sulfur isotope analyses were conducted on 0.05 g of a 200mesh sized of pyrite and realgar which were handpicked and checked under a binocular microscope to ensure purity of >98%. Each sample was reacted with Cu2O powder to produce SO2. The SO2 gas was collected and purified, and followed by S isotopic analysis using a MAT252 mass spectrometer at stable isotope laboratory of the University of Arizona. The δ34S values were reported relative to Vienna Cañon Diablo Troilite (VCDT), and analytical precision is ±0.2‰.   Results and discussion Based on field and petrographic observations, three mineralization stages including diagenetic, hydrothermal (earlyore, mainore and lateore substages), and supergene stages were identified at the Chaldaq deposit. At least six types of pyrite and arsenian pyrite were recognized at the Chaldaq deposit. On the basis of EPMA results, gold with 10 to 80 ppm Au content occurs as solid solution (Au+)in arsenian pyrite [(Fe2+As3+)S2Au2.S0]. Various studies have documented that gold in the primary ores of sedimenthosted gold deposits is largely hosted by arsenian pyrite, and that gold in occurs as a substituting cation in the form of  solid solution (Au+) and/or as nanoparticles of native gold (Au0) (Cook and Chryssoulis, 1990; Fleet and Mumin, 1997; Reich et al., 2005). Au– and Au3+ have also been suggested to occur as solid solution in pyrite (Arehart et al., 1993; Li et al., 2003). The understanding of the chemical state of gold in iron sulfides is important for deep understanding of gold depositional mechanism in sedimenthosted gold deposits. Mainore substage sulfide minerals has δ34S values ranging from 3.5 to 6.5 ‰ (avg. 5‰, n=6). The Fe content of sphalerites from the mainore indicates that sphalerite precipitated from relatively low fS2 fluid. Based on all evidence, it can be said that sulfur mineralization of the Chaldaq prospect has been formed by the performance of oxidized hydrothermal fluid on organicbearing carbonaceous host rocks (at the Chaldaq unit) and the systematic subtraction of H2S reductive species from that environment. Considering the low temperature (fS2 between 14 to 16) and the acidic to neutral pH (presence of kaolinite and illite) for the mainore stage of hydrothermal mineralization in the Chaldaq prospect, probably the major contribution of sulfur is in the form of H2S. References Arehart, G.B., Chryssoulis S.L. and Kesler, S.E., 1993. Gold and arsenic in iron sulfides from sedimenthosted disseminated gold deposits: implications for depositional processes. Economic Geology, 88(3): 171–185. https://doi.org/10.2113/gsecongeo.88.1.171 Cook, N.J. and Chryssoulis S.L., 1990. Concentrations of invisible gold in the common sulfides. Canadian Mineralogist, 28(3): 1–16. https://doi.org/10.1007/s001260140562z Fleet, M.E. and Mumin, A.H., 1997. Goldbearing arsenian pyrite and marcasite and arsenopyrite from Carlin trend gold deposits to laboratory synthesis. American Mineralogist, 82(3): 182–193. https://doi.org/10.2138/am19971220 Li, J.L., Qi, F. and Xu, Q.S., 2003. A negatively charged species of gold in minerals–further study of chemically bound gold in arsenopyrite and arsenian pyrite. Neues Jahrbuch für MineralogieAbhandlungen, 5(2): 193–214. https://doi.org/10.1127/00283649/2003/20030193 Mehrabi, B., Yardley, B.W.D. and Cann, J.R., 1999. Sedimenthosted, disseminated gold mineralisation at Zarshuran, NW Iran. Mineralium Deposita, 34(3): 656–671. https://doi.org/10.1007/s001260050227 Reich, M., Kesler, S.E., Utsunomiya, S., Palenik, C.S., Chryssoulis, S.L. and Ewing, R.C., 2005. Solubility of gold in arsenian pyrite. Geochimica and Cosmochimica Acta, 69(6): 2781–2796. https://doi.org/10.1016/j.gca.2005.01.011
Keywords
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved