>
Fa   |   Ar   |   En
   کانی‌ شناسی و نحوه پیدایش فیروزه در کانسار مس پورفیری علی آباد  
   
نویسنده جدیدی اردکانی سعیده ,مکی زاده محمد علی ,آیتی فریماه
منبع زمين شناسي اقتصادي - 1399 - دوره : 12 - شماره : 1 - صفحه:93 -109
چکیده    در کانسار مس پورفیری علی آباد واقع در شمال‌ غرب باتولیت گرانیتی شیرکوه یزد، ماسه سنگ های آرکوزی و کنگلومراهای کرتاسه زیرین، تحت‌تاثیر نفوذ توده لوکوگرانیتی (بعد از کرتاسه)، متحمل دگرسانی های گرمابی اغلب فیلیک و کانی سازی مس پورفیری در توده نفوذی همراه شده‌ اند. تنها در یک نقطه کانی سازی اسکارن بدون مس نیز شکل‌گرفته است. کانی های پهنه دگرسانی فیلیک با همایندی زیر مشخص هستند:;sericite + quartz + pyrite + alunite + turquoise + goethite + jarucite;فیروزه به شکل‌های رگچه ای، گرهک های کم‌و‌بیش مدور تا بی شکل و پوششی در رنگ های آبی، آبی‌سبز و آبی متمایل به سفید در آرکوزهای دگرسان مشاهده می شود. هم‌پوشانی هوازدگی جوی بر پهنه فیلیک، سبب اکسیداسیون پیریت و کالکوپیریت و شکل گیری سیال اسیدی شده که فروشست al ،cu و p را از سنگ میزبان شکل‌داده است. عملکرد این سیال بر سنگ میزبان ضمن مراحل چندگانه سبب رخداد فیروزه شده است. خاستگاه و رخداد فیروزه ناشی از دگرسانی کانی های سنگ میزبان فیلیکآرژیلیک (کائولینیت) است. همچنین همیافتی نزدیک آلونیت با فیروزه در برخی موارد، خاستگاه آن را به خرج آلونیت (فسفاتی شدن) نیز ممکن می سازد.
کلیدواژه فیروزه، آلونیت، مس پورفیری، علی آباد- دره زرشک، ایران مرکزی
آدرس دانشگاه اصفهان, دانشکده علوم, گروه زمین شناسی, ایران, دانشگاه اصفهان, دانشکده علوم, گروه زمین شناسی, ایران, دانشگاه پیام نور, گروه زمین شناسی, ایران
 
   Mineralogy and Formation Conditions of Turquoise in Ali Abad Cu Porphyry Deposit  
   
Authors Ayati Farimah ,Mackizadeh Mohammad Ali ,Jadidi Ardekani Saeide
Abstract    Introduction;In porphyry copper deposits, turquoise is considered to be a supergene oxidation product (John et al., 2010; Chavez, 2000). Based on Rezaian et al., 2003; Zarasvandi et al., 2005 and Eslamizadeh, 2004, the Aliabad index is introduced as a porphyry copper system. The first published report on turquoise events around AliAbad was presented by Momenzadeh et al., 1988. This area is located 57 km southwest of Yazd. Alterations often include siricitization, advanced argillization. Kaolinization and silicification have occurred frequently in the arkose and microcan glomerate of the Sangestan formation. The aim of this research study is to try to reconstruct and investigate the formation and origin of turquoise by using the latest mineralogical and geochemical data. Field evidence shows occurrence of turquoise in the form of a veinlet and nodules, with bluegreen and bluewhite colors. Jarosite, alunite, quartz and iron oxides are found together with turquoise.; ;Materials and Methods;A geological map of the area with a scale of 1/15000 was prepared. 35 samples of intrusive bodies, sandstones and altered rocks were selected to produce thin and polished sections. XRD and the EDS analyses were carried out at the central laboratory of Isfahan University and the University of Oklahoma, USA, respectively in order to identify the chemical composition of phases.;Results;Based on the studies, several chain processes have been involved in the form of turquoise: the initiator of the reactions is the formation of an oxidant environment (gossan), in which metal sulfides (Cu, Fe) in the phyllic zone of porphyry copper deposit have played a fundamental role. Turquoise has two species in this area. One is in the form of direct deposition in the veinlets, away from the alteration of the host rock and the mineralization center, and the other one is in the form of substitution. It is undeniable that the host rock with Kaolinitesericite alteration is required for substitution. The close association of aluniteturquoise may imply that turquoise is a product of the phosphatization process of alunite. The Alunite Supergene event in the alteration zone and its accompaniment with turquoise indicates the mineral complex of advanced argillic alteration. The mineral chemistry highlighted the high percentages of aluminum concentration which is a property of minerals in advanced argillic zone.; ;Discussion;The phyllic zone has the largest part of the region apos;s alteration (Taghipour and Mackizadeh, 2011; Moore et al., 2011). An advanced argillic zone with the presence of alunitejarosite with turquoise is scattered inside the phyllic zone. To confirm microscopic observations, XRD and EDS analyses were used. These analyses prove the presence of the turquoise phase.;In some analyses performed on the turquoise mineral phase, the presence of potassium and silicon probably indicates the transitional phase of conversion of sericite or alunite to turquoise. Pyrite in the oxidant condition has been disrupted by the effects of atmospheric water and created goethite and sulfuric acid. The produced ferric sulfate can induce dissolution of chalcopyrite. The occurrence of iron oxides and oxyhydroxides will lead to the development of the gossan zone. Gossan apos;s transformation, in addition to supplying copper, causes acidic fluids to continue the reaction. Under acidic conditions, the phosphate leaching from the arkose has been subjected to the following reaction:;Ca5 (PO4)3OH + 5H2SO4 + 9/2O2 → 5CaSO4 2H2O + 3H3PO4;In addition to phosphate and copper, aluminum is the most important element in the structure of turquoise. Under an acidic environment, arkose feldspars and hydrolysis reactions during alteration will be used for the formation of sericite, kaolinite and gypsite. With the presence of sulfate and potassium released from the alteration of feldspars, alunite and turquoise can be formed. The aluniteturquoise paragenesis confirms formation of turquoise by alunite (Espahbod, 1976). Turquoise will be formed by the reaction of potassium, copper sulfate and anion phosphate with alunite:;8K+ + CuSO4 + 4H2PO4 + 2KAl3 (SO4)2(OH) 6 → CuAl6 (PO4)4(OH)8 4H2O + 5K2SO4 + 4H+;The hydrogen ions released in this reaction will lower the pH of the environment and cause progression of hydrolysis reactions. Finally, jarosite will be formed by the interaction of K+, sulfate and Fe3+. Based on these reactions, an aluminumrich phase is needed for stabilizing phosphate and soluble copper.; ;References;Chavez, W.X.‌Jr., 2000. Supergene oxidation of copper deposits: zoning and distribution of copper oxide minerals. Society of Economic Geologists, 2(41):10–21.;John, D.A., Ayuso, R.A., Barton, M.D., Blakely, R.J., Bodnar, R.J., Dilles, J.H., Gray, F., Graybeal, F.T., Mars, J.C., McPhee, D.K., Seal, R.R., Taylor, R.D. and Vikre, P.G., 2010. Porphyry copper deposit model. Chap. B of Mineral deposit models for resource assessment. U.S. Geological Survey Scientific Investigations, United State of America, Report 20105070, 169 pp.;Eslamizadeh, A., 2004. Petrology of AliAbad Darreh Zereshk igneous rocks and related copper mineralization. Ph.D. Thesis, Islamic Azad University, Tehran, Iran, 231 pp. (in Persian with English abstract);Espahbod, M.‌R., 1976. Le District minier de la mine de Turquoise de Kuhemadan (Neychabur, Iran): Mineralisations et caracteres geologiques, geochimiques et metallogeniques de I’uranium, du cuivre et du molylodene. Ph.D. Thesis, Univesite de Nancy, Nancy, France, 191 pp.;Momenzadeh, M., Farjad Bastani, M. and Rashid Nejad Omran, N., 1988. Primary study on Yazd Province Ore Deposirs. Proceedings of ore deposits and mining potential of Yazd Province, Yazd University, Yazd, Iran. (in Persian);Moore, F., Deymar, S. and Taghipour, B., 2011. Genetic relation between skarn mineralization and petrogenesis of the Darreh Zerreshk granitoid intrusion, southwest of Yazd. Journal of Economic Geology, 3(2):97–110. (in Persian with English abstract);Rezaian, K., Noghrehiyan, M., Mackizadeh, M.A. and Sherafat, Sh., 2003. Geology and genesis of Turquoise in the AliAbad index (TaftYazd). Research Journal University of Isfahan Science , 18(2): 138–145. (in Persian with English abstract);Taghipour, B. and Mackizadeh, M.A., 2011. Petrogenesis of skarn related Cuporphyry intrusion deposit, AliAbad Darreh Zereshk, Yazd. Journal of Economic Geology, 3(1):79–92. (in Persian with English abstract);Zarasvandi, A., Liaghat, S. and zentill, M., 2005. Geology of the DarrehZerreshk and AliAbad Porphyry Copper Deposits, Central Iran. International Geology Review, 47(6): 620–646.
Keywords
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved