ترکیب شبکه عصبی، الگوریتم ژنتیک و الگوریتم تجمع ذرات در پیشبینی سود هر سهم
|
|
|
|
|
نویسنده
|
نقدی سجاد ,عرب مازار یزدی محمد
|
منبع
|
دانش حسابداري - 1396 - دوره : 8 - شماره : 3 - صفحه:7 -34
|
چکیده
|
پیشبینی سود هر سهم از اهمیت فراوانی برای سرمایهگذاران و مدیران داخلی شرکتها برخوردار است. بررسی پژوهشهای قبلی حاکی از این بوده است که در اکثر آنها، به فرضیه وجود رابطه غیرخطی میان سود وعوامل تعیینکننده آن توجه نشده است. این در حالی است برخی از پژوهشگران نشان دادهاند که رابطه میان سود و عوامل تعیینکننده آن خطی نیست. به همین دلیل و همچنین نقش محوری سود هر سهم در تصمیمات سرمایهگذاران، با استفاده از مدلهای مختلف شبکه عصبی مصنوعی و مدلهای سری زمانی، سود هر سهم میاندورهای 126 شرکت پذیرفته شده در بورس اوراق بهادار تهران طی سالهای 1389 تا 1395 بررسی و پیشبینی شده است. در ادامه و در گام بعدی برای تعیین متغیرهای ورودی موثر بر سود هر سهم از الگوریتم بهینهسازی ژنتیک و تجمع ذرات استفاده شده است. بهکارگیری روش ترکیبی شبکه عصبی مصنوعی، الگوریتم ژنتیک و الگوریتم تجمع ذرات میتواند علاوه بر استفاده از روشهای نوین برای پیشبینی سود هر سهم، سرمایهگذاران را نیز در تصمیمگیریهای آتی یاری رساند. نتایج نشان میدهد روش پیشنهادی قادر است تا متغیرهای ورودی موثر بر سود هر سهم را از میان تمام متغیرهای ورودی استخراج و توانایی و قدرت تعمیم شبکه عصبی مصنوعی را افزایش دهد.
|
کلیدواژه
|
پیشبینی سود هر سهم، شبکه های عصبی، الگوریتم ژنتیک
|
آدرس
|
دانشگاه شهید بهشتی, ایران, دانشگاه شهید بهشتی, ایران
|
|
|
|
|
|
|