|
|
ردهبندی تصاویر سرطان پوست با استفاده از یادگیری عمیق جمعی دو سطحی
|
|
|
|
|
نویسنده
|
جابری پویان ,نعمتی شهلا ,بصیری محمداحسان
|
منبع
|
پردازش علائم و داده ها - 1403 - شماره : 2 - صفحه:79 -90
|
چکیده
|
برخی از مشکلات پوستی خوشخیم و بیضرر و برخی دیگر تودههای بدخیمی هستند که با تشخیص بهموقع میتوانند همچنان بیضرر بمانند. در این پژوهش، یک روش یادگیری عمیق جمعی دوسطحی برای ردهبندی تصاویر پزشکی سرطان پوست پیشنهاد میشود. در مدل پیشنهادی از یادگیری عمیق در دو سطح استفاده شدهاست و سپس در هر سطح از الگوریتم catboost برای ترکیب این مدلها استفاده میشود. نتایج مدل پیشنهادی با شبکههای عمیق تکسطحه و پژوهشهای مشابه پیشین مقایسه شدهاست. نتایج نشانمیدهد که مدل پیشنهادی عملکرد بهتری در ردهبندی تصاویر سرطان پوست دارد. عملکرد مدل پیشنهادی، چه در هر یک از کلاسها و چه درکل، از تمامی مدلهای یادگیری عمیق مستقل بهتر بودهاست. همچنین نشانداده شده که استفاده از vgg-ensemble در کنار روش پیشنهادی و ترکیب نتایج آن بهکمک catboost و تشکیل یک مجمع دوسطحی، عملکرد آن را در هر کلاس نیز بهبود دادهاست.
|
کلیدواژه
|
یادگیری عمیق، یادگیری جمعی، سرطان پوست، خوشخیم، بدخیم
|
آدرس
|
دانشگاه شهرکرد, دانشکده فنی و مهندسی, ایران, دانشگاه شهرکرد, دانشکده فنی و مهندسی, گروه مهندسی کامپیوتر, ایران, دانشگاه شهرکرد, دانشکده فنی و مهندسی, گروه مهندسی کامپیوتر, ایران
|
پست الکترونیکی
|
basiri@sku.ac.ir
|
|
|
|
|
|
|
|
|
classification of skin cancer images using two-level ensemble deep learning
|
|
|
Authors
|
jaberi pouyan ,nemati shahla ,basiri mohammad ehsan
|
Abstract
|
today, despite the tremendous advances in medical science and technology, access to a specialist doctor is still considered a major challenge. this challenge is of great importance for diseases such as cancer. skin cancer is the 13th most common cancer in men and the 15th most common cancer in women. while some skin problems are benign and harmless, some of them can be malignant masses, which will remain harmless if they are diagnosed in time. when consulting a specialist doctor may be time-consuming and expensive, an intelligent system can be a fast alternative or, at least, an efficient preliminary treatment solution. for skin cancer, such intelligent system may utilize the images of suspicious skin masses labeled according to their benign or malignant state by specialist physicians. these labeled images are useful for training intelligent systems which should diagnose the potential problems in unseen new images.in this research, a novel deep learning-based approach is proposed for the problem of classifying skin cancer images into two categories of benign and malignant images. in the proposed model, powerful deep learning models for image classification including vgg, resnet, and inception are used in two levels. specifically, we formed two ensembles; vgg ensemble which consists of vgg-16 and vgg-19 models and resnet ensemble which consists of resnet152, resnet50, and inception models. catboost algorithm is used in each level to combine the models on that ensemble. finally, at the next level, two ensembles were combined using the catboost algorithm. the proposed ensemble model tries to improve the accuracy and consistency of the results by aggregating the deep models at its two levels. in order to show the utility of the proposed model, a subset of isic public dataset for skin cancer images is used for training and evaluation of models. the performance of the proposed ensemble model is compared with several deep neural networks and previous similar researches. specifically, we compared the results achieved by the proposed model with those obtained by existing similar deep models and those used as building blocks of the proposed model. the results show that the proposed model performs better in classifying skin cancer images. the performance of the proposed model, both in each of the classes and in general, has been better than all independent deep learning models. it has also been shown that using vgg ensemble along with this proposed model by combining its results with the help of catboost and forming a two-level ensemble has improved its independent performance in each class.
|
Keywords
|
deep learning ,ensemble learning ,skin cancer ,benign ,malignant
|
|
|
|
|
|
|
|
|
|
|