|
|
نمونهگیری از گراف شبکههای اجتماعی براساس ویژگیهای توپولوژیکی و الگوریتم کلونی زنبور عسل
|
|
|
|
|
نویسنده
|
بویر عسگرعلی ,نوروزی سمیه
|
منبع
|
پردازش علائم و داده ها - 1399 - شماره : 3 - صفحه:55 -70
|
چکیده
|
با توجه به رشد سریع شبکههای اجتماعی در چند سال اخیر، مساله نمونهگیری از گرافهای بسیار بزرگ شبکه های اجتماعی با هدف تجزیه و تحلیل سریع شبکه بر اساس نمونه های کوچک، اهمیت خاصی پیدا کرده است. مطالعات زیادی در این راستا انجام شده است، ولی آنها تا حد زیادی با مشکل انتخاب تصادفی، عدم حفظ ویژگیهای شبکه های پیچیده در گراف حاصل و یا صرف هزینه زمانی بالا برای استخراج گراف نمونه مواجه هستند. در این مقاله یک روش نمونه گیری جدید را برای نخستین بار با ارائه یک رابطه جدید مبتنی بر ویژگیهای ساختاری برای مشخصکردن اهمیت گرهها و استفاده از الگوریتم کلونی زنبور عسل پیشنهاد می کنیم. این روش نمونه گیری با ارائه یک رویکرد آگاهانه غیرتصادفی در نمونه گیری سعی دارد تا نمونه حاصله از لحاظ ویژگیهایی مانند توپولوژی شبکه، توزیع درجه، تراکم داخلی، درجه ورودی و خروجی و غیره شباهت زیادی با شبکه اصلی داشته باشد. نتایج حاصل، برتری روش پیشنهادی را از لحاظ حفظ ویژگیهای توزیع درجه، ضریب خوشه بندی و غیره در نمونه گراف بهدستآمده نشان می دهد.
|
کلیدواژه
|
نمونهگیری، شبکههای اجتماعی، ضریب خوشهبندی، کلونی زنبور عسل
|
آدرس
|
دانشگاه شهید مدنی آذربایجان, دانشکده فناوری اطلاعات, گروه مهندسی کامپیوتر, ایران, دانشگاه آزاد اسلامی واحد میاندوآب, ایران
|
پست الکترونیکی
|
someiyenorozi2014@gmail.com
|
|
|
|
|
|
|
|
|
Sampling from social networks’s graph based on topological properties and bee colony algorithm
|
|
|
Authors
|
Bouyer Asgarali ,Norouzi Somayeh
|
Abstract
|
In recent years, the sampling problem in massive graphs of social networks has attracted much attention for fast analyzing a small and good sample instead of a huge network. Many algorithms have been proposed for sampling of social network rsquo; graph. The purpose of these algorithms is to create a sample that is approximately similar to the original network rsquo;s graph in terms of properties such as degree distribution, clustering coefficient, internal density and community structures, etc. There are various sampling methods such as random walkbased methods, methods based on the shortest path, graph partitioningbased algorithms, and etc. Each group of methods has its own pros and cones. The main drawback of these methods is the lack of attention to the high time complexity in making the sample graph and the quality of the obtained sample graph. In this paper, we propose a new sampling method by proposing a new equation based on the structural properties of social networks and combining it with bee colony algorithm. This sampling method uses an informed and nonrandom approach so that the generated samples are similar to the original network in terms of features such as network topological properties, degree distribution, internal density, and preserving the clustering coefficient and community structures. Due to the random nature of initial population generation in metaheuristic sampling methods such as genetic algorithms and other evolutionary algorithms, in our proposed method, the idea of consciously selecting nodes in producing the initial solutions is presented. In this method, based on the finding hub and semihub nodes as well as other important nodes such as core nodes, it is tried to maintain the presence of these important nodes in producing the initial solutions and the obtained samples as much as possible. This leads to obtain a highquality final sample which is close to the quality of the main network. In this method, the obtained sample graph is well compatible with the main network and can preserve the main characteristics of the original network such as topology, the number of communities, and the large component of the original graph as much as possible in sample network. Nonrandom and conscious selection of nodes and their involvement in the initial steps of sample extraction have two important advantages in the proposed method. The first advantage is the stability of the new method in extracting high quality samples in each time. In other words, despite the random behavior of the bee algorithm, the obtained samples in the final phase mostly have close quality to each other. Another advantage of the proposed method is the satisfactory running time of the proposed algorithm in finding a new sample. In fact, perhaps the first question for asking is about time complexity and relatively slow convergence of the bee colony algorithm. In response, due to the conscious selection of important nodes and using them in the initial solutions, it generates high quality solutions for the bee colony algorithm in terms of fitness function calculation. The experimental results on real world networks show that the proposed method is the best to preserve the degree distribution parameters, clustering coefficient, and community structure in comparison to other method.
|
Keywords
|
Sampling ,Social networks ,Clustering coefficient ,Artificial Bee Colony
|
|
|
|
|
|
|
|
|
|
|