|
|
سامانه تشخیص سقوط افراد مبتنی بر منطق فازی نوع دو و الگوریتم بهینهسازی اجتماع ذرات چندهدفه
|
|
|
|
|
نویسنده
|
محمودزاده آذر ,آگاهی حامد ,واقفی مهسا
|
منبع
|
پردازش علائم و داده ها - 1399 - شماره : 1 - صفحه:47 -60
|
چکیده
|
توجه به سلامت سالمندان بهعنوان سرمایههای ارزشمند کشور، امری ضروری و شایان توجه است. آسیبهای جدی یا حتی مرگ ناشی از زمینخوردن برای افراد سالمند بسیار محتمل است؛ بنابراین تشخیص سریع وقوع این رخداد در بسیاری موارد میتواند منجر به نجات جان شخص شود. در این مقاله روشی پیشنهاد شده است که بر اساس آن تصاویر ویدئویی نظارتی از محل حضور شخص همواره مورد پردازش قرار میگیرد. در ادامه، با استفاده از الگوریتم استخراج پسزمینه بصری (vibe)، شخص متحرک از پسزمینه جدا شده و شش ویژگی موثر از تصویر استخراج میشود. در انتها سامانه منطق فازی نوع دو برای تشخیص سقوط فرد به کار گرفته می شود؛ همچنین بهمنظور کاهش پیچیدگی محاسباتی سامانه فازی، از الگوریتم بهینه سازی اجتماع ذرات چندهدفه برای انتخاب توابع تعلق موثر استفاده شده است. نتایج اعمال روش پیشنهادی تصدیق میکند که این سامانه قادر به تشخیص سقوط شخص با سرعت قابل قبول و دقت تصمیمگیری مناسب است.
|
کلیدواژه
|
تشخیص سقوط، الگوریتم vibe، منطق فازی نوع دو، الگوریتم بهینه سازی اجتماع ذرات چندهدفه
|
آدرس
|
دانشگاه آزاد اسلامی واحد شیراز, گروه مهندسی برق, ایران, دانشگاه آزاد اسلامی واحد شیراز, گروه مهندسی برق, ایران, دانشگاه آزاد اسلامی واحد شیراز, گروه مهندسی برق, ایران
|
پست الکترونیکی
|
vaghefi@iaushiraz.ac.ir
|
|
|
|
|
|
|
|
|
A Fall Detection System based on the Type II Fuzzy Logic and Multi-Objective PSO Algorithm
|
|
|
Authors
|
Mahmoodzadeh Azar ,Agahi Hamed ,Vaghefi Mahsa
|
Abstract
|
The Elderly health is an important and noticeable issue; since these people are priceless resources of experience in the society. Elderly adults are more likely to be severely injured or to die following falls. Hence, fast detection of such incidents may even lead to saving the life of the injured person. Several techniques have been proposed lately for the fall detection of people, mostly categorized into three classes. The first class is based on the wearable or portable sensors [16]; while the second class works according to the sound or vibration sensors [78]. The third one is based on the machine vision. Although the latter methods require cameras and image processing systems, access to surveillance cameras which are economical has made them be extensively used for the elderly. By this motivation, this paper proposes a realtime technique in which, the surveillance video frames of the person rsquo;s room are being processed. This proposed method works based on the feature extraction and applying typeII fuzzy algorithm for the fall detection. First, using the improved visual background extraction (ViBe) algorithm, pixels of the moving person are separated from those of the background. Then, using the obtained image for the moving person, six features including lsquo;aspect ratio rsquo;, lsquo;motion vector rsquo;, lsquo;centerofgravity rsquo;, lsquo;motion history image rsquo;, lsquo;the angle between the major axis of the bounding ellipse and the horizontal axis rsquo; and the lsquo;ratio of major axis to minor axis of the bounding ellipse rsquo; are extracted. These features should be given to an appropriate classifier. In this paper, an interval typeII fuzzy logic system (IT2FLS) is utilized as the classifier. To do this, three membership functions are considered for each feature. Accordingly, the number of the fuzzy laws for six features is too large, leading to high computational complexity. Since most of these laws in the fall detection are irrelevant or redundant, an appropriate algorithm is used to select the most effective fuzzy membership functions. The multiobjective particle swarm optimization algorithm (MOPSO) is an operative tool for solving largescale problems. In this paper, this evolutionary algorithm tries to select the most effective membership functions to maximize the lsquo;classification accuracy rsquo; while the lsquo;number of the selected membership functions rsquo; are simultaneously minimized. This results in a considerably smaller number of rules. In this paper to investigate the performance of the proposed algorithm, 136 videos from the movements of people were produced; among which 97 people fell down and 39 ones were related to the normal activities (nonfall). To this end, three criteria including accuracy (ACC), sensitivity (Se.), and specificity (Sp.) are used. By changing the initial values of the parameters of the ViBe algorithm and frequent retuning after multiple frames, detecting the moving objects is done faster and with higher robustness against noise and illumination variations in the environment. This can be done via the proposed system even in microprocessors with low computational power. The obtained results of applying the proposed approach confirmed that this system is able to detect the human fall quickly and precisely.
|
Keywords
|
Fall Detection ,ViBe Algorithm ,Type II Fuzzy Logic ,MOPSO
|
|
|
|
|
|
|
|
|
|
|