>
Fa   |   Ar   |   En
   Prediction of tool condition during turning of aluminium/alumina/graphite hybrid metal matrix composites using machine learning approach  
   
نویسنده radhika n.
منبع journal of engineering science and technology - 2015 - دوره : 10 - شماره : 10 - صفحه:1310 -1325
چکیده    Aluminium/alumina/graphite hybrid metal matrix composites manufactured using stir casting technique was subjected to machining studies to predict tool condition during machining. fresh tool as well as tools with specific amount of wear deliberately created prior to machining experiments was used. vibration signals were acquired using an accelerometer for each tool condition. these signals were then processed to extract statistical and histogram features to predict the tool condition during machining. two classifiers namely,random forest and classification and regression tree (cart) were used to classify the tool condition. results showed that histogram features with random forest classifier yielded maximum efficiency in predicting the tool condition. this machine learning approach enables the prediction of tool failure in advance,thereby minimizing the unexpected breakdown of tool and machine. © school of engineering,taylor’s university.
کلیدواژه Histogram features; Hybrid composite; Machine learning; Machining; Random forest; Regression tree; Statistical features; Tool condition
آدرس department of mechanical engineering,amrita school of engineering,amrita vishwa vidyapeetham,ettimadai, India
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved