|
|
اندازهگیری عمق برف و بررسی مولفهی دما در ارتباط با ویژگی برف
|
|
|
|
|
نویسنده
|
اصغری سراسکانرود صیاد ,صفری شیوا ,ملانوری الهام
|
منبع
|
پژوهش هاي حفاظت آب و خاك - 1400 - دوره : 28 - شماره : 4 - صفحه:187 -206
|
چکیده
|
سابقه و هدف: با توجه به نقش مهم برف در چرخهی آب زمین، بررسی خصوصیات برف بهویژه در مناطق کوهستانی، ضروری به نظر میرسد. فنآوری سنجشازدور میتواند جهت مطالعه مناطق بزرگ با وضوح مکانی و زمانی بالا استفاده شود. سنجندههای راداری با روزنه مجازی با باندهای فرکانسی بزرگ و طولموجهای کوچک و قابلیت نفوذپذیری زیاد در این دست از مطالعات ترجیح داده میشوند. فن تداخلسنجی راداری باوجود اینکه حجم اطلاعات حاصل از تحلیل اینترفرومتری بالا است، یک ابزار قدرتمند در محاسبه عمق برف بوده و مجموعه داده سنتینل 1 به دلیل دسترسی آسان در مطالعات تداخلسنجی ترجیح داده میشوند. از طرفی امروزه ارتباط lst با ویژگیهای برف مورد توجه بسیاری از محققین میباشد. در مطالعهی حاضر از فن تداخلسنجی راداری جهت برآورد عمق برف و همچنین از سامانه ابری google earth engine در برآورد خصوصیات برفی ازجمله عمق و سطح پوشش برفی استفاده شده است. همچنین ارتباط بین مولفه دما و سطح و عمق برف نیز مورد بررسی قرار گرفته است.مواد و روش: حوضه لیقوان با وسعتی حدود 185 کیلومترمربع در شمال غرب کشور و در استان آذربایجان شرقی واقع شده است. در این مطالعه برای استخراج عمق برف از 4 تصویر راداری سنتینل 1 مربوط به بازه زمانی آذر تا اسفند 1398 و یک تصویر راداری مربوط به شهریور 1398 با فرمت slc جهت پیادهسازی تداخلسنجی راداری در نرمافزار sarscape استفاده شده است. جهت افزایش دقت بخشی از کار از سامانه google earth engine استفاده شده است. بههمین منظور برای استخراج سطح پوشش برفی و مساحت آن از محصول روزانه ndsi سنجنده مودیس و محصول ماهانه ndsidepth جهت استخراج میانگین عمق برف مربوط به هریک از ماههای برفی در سامانه ابری earth engine google استفاده شد. همچنین از محصول روزانه mod11a1 سنجنده مودیس جهت تهیه نقشه دما برای بررسی رابطه دما با ویژگی برف استفاده شد.یافتهها: بررسی نقشه سطوح برفی حضور برف در تمام ماههای بازه زمانی موردمطالعه، در منطقه را نشان داده و بیشترین تمرکز سطوح برفی در مناطق مرتفع مشاهده شد. با توجه به خروجیهای سامانه earth engine google بیشترین و کمترین مقدار سطح پوشش برف به ترتیب مربوط به دیماه با 180 کیلومترمربع و آذرماه با مقدار 83 کیلومترمربع محاسبهشده است. متوسط بیشترین و کمترین مقدار عمق برف به ترتیب مربوط به ماههای بهمن و آذر بوده که با بهرهگیری از فن تداخلسنجی راداری مقادیر 32 و 9 سانتیمتر و با استفاده محصول snowdepthinst در سامانه earth engine google مقادیر 24 و 4 سانتیمتر را نشان داده است. همچنین بررسیهای حاصل از نقشههای دما مقادیر کمینه و بیشینه 14 و 5 درجه سانتیگراد را نشان داد. مقادیر مربوط به تحلیل رگرسیونی بین سری زمانی دمای سطح زمین و سطح پوشش برف به ترتیب 003/0 و 020/3 برای پارامترهای sig وz به دست آمد. مقدار متغیر r2 نیز در ارتباط با بررسی همبستگی عمق برف و دما نیز 0/47 به دست آمد.نتیجهگیری: نتایج این پژوهش بیانگر قابلیت هر دو روش فن تداخل سنجی راداری و کد نویسی در سامانه گوگل ارث انجین در محاسبهی عمق برف میباشد. نقشهها و مقادیر عمق برف به دست آمده میتواند ابزار مناسب جهت مدیریت منابع آبی منطقه برای مصارف گوناگون باشد. همچنین بررسی نتایج ضرایب رگرسیونی رابطه معنی داری بین متغیر lst و عمق وسطح پوشش برف نشان داد. بطوریکه رابطه معکوس بین دو مولفه lst و پوشش برفی (sc) و lst و عمق برف و همچنین رابطه مستقیم بین کاهش دما و lst را نشان داد.
|
کلیدواژه
|
تداخلسنجی راداری، سنتینل 1، عمق سنجی برف، حوضه آبخیز لیقوان،
|
آدرس
|
دانشگاه محقق اردبیلی, دانشکده ادبیات و علوم انسانی, گروه جغرافیای طبیعی, ایران, دانشگاه محقق اردبیلی, دانشکده علوم اجتماعی, گروه جغرافیای طبیعی, ایران, دانشگاه محقق اردبیلی, دانشکده علوم اجنماعی, گروه جغرافیایی طبیعی, ایران
|
پست الکترونیکی
|
e.mollanuri@gmail.com
|
|
|
|
|
|
|
|
|
Measuring snow depth and investigating the temperature component about snow characteristics
|
|
|
Authors
|
Asghari Saraskanrood sayyad ,safari shiva ,Mollanouri Elham
|
Abstract
|
Background and objective: Considering the important role of snow in the groundwater cycle, the study of snow characteristics, especially in mountainous regions, seems necessary. Remote sensing technology can be used to study large areas with high spatial and temporal resolution. Synthetic aperture radar sensors with large frequency bands, small wavelengths, and high permeability are preferred in this type of study. Differential Radar interferometry technique Although the volume of information derived from interferometric analysis is high is a powerful tool in calculating the depth of snow, and the Sentinel data set is preferred due to easy access in interferometric studies. On the other hand, the relationship between LST with snow characteristics is considered to be a lot of researchers. In this study, the radar interferometry technique for estimating the depth of snow, as well as the Google Earth Engine, cloud system, has been used to estimate the snow characteristics, including the depth and surface of the snow cover. Also, the relationship between the component of temperature and snow surface and depth is examined.Materials and methods: The Liqvan watershed with an area of 185 kilometers is located in the northwest of the country and East Azerbaijan province. In this study, for extraction of the depth of snows from 4 radar images of Sentinel 1 related to the time interval of December until March 1398 and a radar image associated with September 1398 in SLC format to implement radar interferometry in SARSCAPE software Used. To increase accuracy part of the work was used from the Google Earth Engine system. For this purpose, to extract the surface of the snow cover and its area of the NDSI daily product of the Modis sensor and the monthly NDSI DEPTH product was used for extraction of the average depth of snow of each snow month in the Google Earth Engine Cloud System. Also, the Daily Product of Mod11A1 Modis Sensor was used to prepare a temperature map to examine the relationship between temperature and snow characteristics. Results: Investigating the map of snow surfaces in the area of all months of the study period in the region showed the highest concentration of snow surfaces in high regions. Due to the outputs of the Google Earth Engine system, the highest and lowest snow cover level is calculated by January with 180 kilometers and December with a value of 83 km. The average and the lowest amount of the depth of snow is related to the February and December months, which utilizes the radar interferometry technique of 32 and 9 centimeters and uses the Snow depth Inst product in the Google Earth Engine system 24 and 4 centimeters Has shown. The values for regression analysis were obtained between the time series of the surface temperature and the surface of the snow cover, respectively, 0/003 and 3/020 for the parameters of Sig and Z. The R2 variable was also obtained 0/47 about the correlation of the depth of snow and lst. Conclusion: The results of this study indicate the ability of both radar interferometry technique and coding in the Google Earth Engine in calculating the depth of snow. Maps and measures of the depth of snow can be an appropriate tool for managing water resources in the region for various uses. Also, the results of regression coefficients showed a significant relationship between the LST variable and the depth of snow and snow cover. So that the inverse relationship between the two components of LST and the snow cover (SC) and LST, and the depth of snow, as well as the direct relationship between reduced temperature and LST, showed.
|
Keywords
|
Google earth engine
|
|
|
|
|
|
|
|
|
|
|