>
Fa   |   Ar   |   En
   پیش بینی فضایی-زمانی خشکسالی با استفاده از شاخص spei در شمال شرق ایران  
   
نویسنده سامتی مهسا ,ثنایی نژاد حسین ,قهرمان بیژن ,ریواز فیروزه
منبع پژوهش هاي حفاظت آب و خاك - 1398 - دوره : 26 - شماره : 4 - صفحه:115 -133
چکیده    سابقه و هدف: خشکسالی به عنوان پیچیده‌ترین و خطرناک‌ترین بلایا‌ی طبیعی است که هم در مکان و هم طی زمان تغییر می‌کند. گرمایش جهانی در سال‌های اخیر باعث تشدید این گونه رویدادهای حدی شده است. از این رو استفاده از شاخص‌های خشکسالی که هر دو اثر بارش و دما را در نظر می‌گیرند و نیز استفاده از روش‌های توام فضایی زمانی که گسترش یافته‌ی آمار مکانی هستند، احتمالاً می‌تواند باعث پایش بهتر خشکسالی‌ها و در نتیجه افزایش دقت پیش‌بینی‌ها گردد. در این روش‌ها ساختار همبستگی داده‌ها توسط توابع کوواریانس فضاییزمانی مشخص می‌شود. هدف از این تحقیق بکارگیری و مقایسه‌ی چند تابع تغییرنگار فضاییزمانی برای پیش‌بینی و پهنه‌بندی فضاییزمانی خشکسالی با استفاده از شاخص spei در مقیاس 12 ماهه می‌باشد.مواد و روش‌ها: در این تحقیق از داده‌های ماهانه بارندگی و دمای 48 ایستگاه در شمال شرق کشور طی دوره‌ی آماری 19812012 برای محاسبه‌ی مقادیر شاخص spei در مقیاس 12 ماهه استفاده شده است. تحلیل اکتشافی داده‌ها از نظر فرض‌های مانایی و همسانگردی نیز مورد بررسی قرار گرفت. داده‌ها به دو گروه داده‌های آموزشی و آزمایشی سال 2012 تقسیم شدند. توابع کوواریانس فضاییزمانی تفکیک‌پذیر، متریک، متریکجمعی و ضربیجمعی با تعیین بهترین ترکیب از تغییرنگار‌های کروی، خطی و نمایی برای هریک از تغییرنگار‌های فضایی و زمانی بر روی داده‌های آموزشی برازش داده شدند. بهترین مدل با استفاده از معیارهای آماری mse و mspe، انتخاب و پارامترهای مورد نیاز آن برآورد شدند. در نهایت با استفاده از کریجینگ فضاییزمانی، داده‌های آزمایشی پیش‌بینی و پهنه‌بندی شده و با نقشه‌ی مقادیر مشاهداتی مقایسه شدند. اعتبارسنجی متقابل مدل‌های فضاییزمانی و فضایی محض از طریق معیارهای آماری cor، me، mae و rmse با بکارگیری 25 و 47 همسایگی انجام گرفت.یافته‌ها: بررسی مانایی داده‌های فضاییزمانی، مانایی در فضا را نشان داد. رسم میانگین سری زمانی داده‌ها هم یک روند کاهشی را نشان داد که توسط یک رابطه‌ی رگرسیونی ساده با بکارگیری مقادیر شاخص spei به عنوان متغیر وابسته و زمان به عنوان متغیر تبیینی مدل گردید و داده‌ها روندزدایی شدند. تغییرنگار فضایی داده‌ها در چهار جهت صفر، 45، 90 و 135 درجه، تفاوت زیادی را بین چهار تغییرنگار‌ نشان نداد و بنابراین فرض همسانگردی مورد پذیرش قرار گرفت. برای تعیین ساختار همبستگی داده‌ها از مدل‌های تفکیکپذیر، متریک، متریکجمعی و ضربیجمعی استفاده شد. مقایسه‌ی مدل‌ها از طریق معیار mse نشان داد دو مدل ضربیجمعی و متریک جمعی خطای کمتری نسبت به دو مدل دیگر دارند. مقایسه‌ی این دو مدل در پیش‌بینی مقادیر مشاهده نشده از طریق معیار mspe، مدل ضربیجمعی را با تغییرنگار خطی برای هر دو فضا و زمان به عنوان مدل برتر انتخاب نمود. پس از برآورد پارامترهای مدل و با بکارگیری کریجینگ فضاییزمانی، مقادیر شاخص spei برای داده‌های آزمایشی پیش‌بینی و نقشه‌ی فضاییزمانی آنها ترسیم شد. شباهت نقشه‌ی مقادیر پیش‌بینی شده و نقشه‌ی مقادیر مشاهداتی نشان داد عملکرد خوب در پیش‌بینی مقادیر مشاهده نشده را نشان داد. اعتبارسنجی مدل‌های تغییرنگار فضاییزمانی و فضایی محض نیز نشان داد عملکرد مدل‌های مختلف بسیار نزدیک به یکدیگر بوده است.نتیجه گیری: نتایج این تحقیق نشان داد مدل‌ کوواریانس فضاییزمانی ضربیجمعی نسبت به مدل‌های دیگر توانایی خوبی در پیش‌بینی مقادیر مشاهده نشده دارد و به کمک این گونه مدل‌ها می‌توان مقادیر متغیر مورد نظر خود را در هر موقعیت فضایی و هر مقطع زمانی پیش‌بینی نمود. هم‌چنین اعتبارسنجی مدل‌ها نشان داد مدل‌های مختلف فضاییزمانی و فضایی محض تفاوت چشمگیری نسبت به یکدیگر نداشته و دقت مدل‌ها نیز نسبت به حالت فضایی محض افزایش پیدا نکرده است.
کلیدواژه خشکسالی، شاخص بارش-تبخیروتعرق استاندارد شده، مدل ضربی-جمعی، کریجینگ فضایی-زمانی
آدرس دانشگاه فردوسی مشهد, گروه علوم و مهندسی آب, ایران, دانشگاه فردوسی مشهد, گروه علوم و مهندسی آب, ایران, دانشگاه فردوسی مشهد, گروه علوم و مهندسی آب, ایران, دانشگاه شهید بهشتی, گروه آمار, ایران
 
   Spatio-temporal Prediction of Drought by Using SPEI in North-East of Iran  
   
Authors Sameti Mahsa ,Sanaei nejad Sayed Hossein ,ghahreman bijan ,Rivaz Firoozeh
Abstract    Background and objectives: Drought is one of the most complex and dangerous natural disasters that changes both in space and time. Global warming has intensified such extreme events in recent years. Thus, the use of drought indices that consider both the effects of precipitation and temperature, as well as the use of joint spatiotemporal methods, which are the extensions of spatial statistics, can probably lead to better drought monitoring and thereby increasing the accuracy of predictions. The data correlation structure is determined by the spatiotemporal covariance functions in these methods. The aim of this study is to use and compare a number of spatiotemporal variograms for predicting and spatiotemporal mapping of drought by using the 12 month SPEI index.Materials and methods: In this research, the monthly rainfall and temperature data of 48 stations in the northeast of Iran during the statistical period of 19812012 were used to calculate the SPEI index in a 12month time scale. The exploratory analysis of the data was studied in terms of stationarity and isotropy assumptions. The data were divided into two groups of training and experimental data of 2012. The separable, metric, summetric and productsum spatiotemporal covariance functions were fitted to determine the best combination of spherical, linear and exponential variograms for each of the spatial and temporal variograms on training data. The best model was selected using the MSE and MSPE statistical criteria, and the required parameters were estimated. Finally, using spatiotemporal kriging, the experimental data were predicted, mapped, and compared with the map of the observed values. Crossvalidation of spatiotemporal and purely spatial models was done via COR, ME, MAE and RMSE statistical criteria by using 25 and 47 neighborhoods.Results: The test of the stationarity of spatiotemporal data showed the spatial stationary. Drawing of the average time series data showed a decreasing trend, which was modeled by a simple regression with the use of SPEI index values as dependent variable and time as an explanatory variable, and the data were detrended. The spatial variogram in four directions of 0°, 45°, 90° and 135° did not show a significant difference between the four variograms and the assumption of isotropy was therefore accepted. The separable, metric, summetric and productsum models were used to determine the correlation structure of data. The comparison of models by means of MSE criteria showed that productsum and summetric models have less error as compared with the other two models. Comparison of these two models in the prediction of unobserved values selected the productsum model as the better model with the linear variogram for both the space and time via the MSPE criteria. After estimating the model parameters and using spatiotemporal kriging, the SPEI values were predicted for the experimental data and their spatiotemporal maps were plotted. The similarity of the map of the predicted values and that of observed values indicated the good performance of the model in predicting the unobserved values. Crossvalidation of spatiotemporal and purely spatial models also showed that the performances of various models were very close to each other.Conclusion: The results of this study showed that the productsum spatiotemporal covariance model has a good ability to predict the unobserved values as compared to other models, and with the aid of these models, the values of the desired variable can be predicted in any spatial location and at any time scale. Also, crossvalidation of the models showed that the different spatiotemporal and purely spatial models do not differ significantly from one another, and the precision of the models have not increased as compared to the purely spatial state.
Keywords
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved