|
|
ارزیابی روش های پیش بینی شاخص ترکیبی خشکسالی کشاورزی (cdi) براساس تصاویر ماهوارهای با روش های یادگیری عمیق و یادگیری ماشین
|
|
|
|
|
نویسنده
|
شاملو نازیلا ,ستاری محمدتقی ,ولی زاده کامران خلیل ,آپ آیدین حالیت
|
منبع
|
آب و خاك - 1402 - دوره : 37 - شماره : 5 - صفحه:787 -807
|
چکیده
|
با توجه به بحران خشکیدگی دریاچه ارومیه، مطالعه وضعیت پوشش گیاهی و خشکسالی کشاورزی محدوده حوضه آبریز دریاچه ارومیه که یکی از شش حوضه اصلی ایران محسوب میشود، از اهمیت قابل توجهی برخوردار است. در این مطالعه ابتدا یک شاخص ترکیبی خشکسالی cdi (combined drought index) مبتنی بر شاخصهای وضعیت پوشش گیاهی (vci)، وضعیت دمایی گیاهی (tci) و شاخص تنش آبی محصول (cwsi) با استفاده از دادههای سنجنده modis قرارگرفته در ماهواره terra معرفی و محاسبه گردید. سپس با روشهای درخت تصمیم-طبقهبندی و درخت رگرسیون (dt-cart)، ماشینبردار پشتیان (svm) و حافظه کوتاه مدت، بلند مدت (lstm) و حافظه کوتاه مدت دو جهته (bilstm)، شاخص ترکیبی خشکسالی (cdi) معرفی و تخمین زده شد. در فرآیند مدلسازی شاخص ترکیبی خشکسالی، محصولات شاخصهای پوشش گیاهی، تبخیر-تعرق، تبخیر-تعرق پتانسیل، دمای سطح زمین در روز و دمای سطح زمین در شب برگرفته از سنجنده modis بهعنوان ورودی مدلها استفاده شد. درنهایت بررسی عملکرد مدلها براساس ترکیبهای متفاوتی از ورودی مدلها بااستفاده از معیارهای ارزیابی شامل ضریب همبستگی، جذر میانگین مربعات خطا و ضریب ناش ساتکلیف و همچنین به کمک نمودارهای کلوروگرام، تیلور و ویلونی بصورت بصری انجامشد. نتایج نشانداد که متغیرهای دمای سطح زمین در روز، دمای سطح زمین در شب و تبخیر-تعرق موثرترین متغیرها برای مدلسازی شاخص ترکیبی خشکسالی (cdi) و مطالعه خشکسالی کشاورزی میباشند. همچنین مدل cart با ضریب همبستگی 0.96، میانگین جذر مربعات خطا برابر با 0.029 و ضریب ناش ساتکلیف 0.92 بهعنوان بهترین مدل انتخاب گردید. نتایج بدست آمده نشانداد که روشهای یادگیری ماشین و یادگیری عمیق ابزاری توانمند در مدلسازی و پیشبینی شاخص ترکیبی خشکسالی (cdi) بوده و در بررسی و ارزیابی خشکسالی کشاورزی بهخصوص در حوضههای فاقد آمار با اطمینان کافی میتواند مورد استفاده قرار گیرد.
|
کلیدواژه
|
حافظه کوتاه مدت بلند مدت، درخت تصمیم، سنجش از دور، شاخص خشکسالی، ماشین بردار پشتیبان
|
آدرس
|
دانشگاه تبریز, دانشکده کشاورزی, گروه علوم و مهندسی آب, ایران, دانشگاه تبریز, دانشکده کشاورزی, گروه علوم و مهندسی آب, ایران, دانشگاه تبریز, دانشکده برنامهریزی و علوم محیطی, گروه سنجش از دور و gis, ایران, دانشگاه آنکارا, دانشکده کشاورزی, گروه مهندسی کشاورزی, ترکیه
|
پست الکترونیکی
|
hapaydin@gmail.com
|
|
|
|
|
|
|
|
|
evaluation of combined agricultural drought index (cdi), prediction methods based on satellite images via deep learning and machine learning approaches
|
|
|
Authors
|
shamloo n. ,sattari m.t. ,valizadeh kamran kh. ,apaydin h.
|
Abstract
|
introductiondrought is one of the greatest challenges of our time due to the dangers it poses to the world. in arid and semi-arid regions, it is necessary to continuously monitor agricultural systems that face water shortages and frequent droughts. therefore, it is necessary to have large-scale information about agricultural systems and land use for managing and making decisions for the sustainability of food security. continuous monitoring of drought requires a large amount of information to be processed with great speed and accuracy. due to the complexity and impact of various factors on drought, in recent years, the methods of combining several factors to create a comprehensive drought index have received much attention. machine learning and deep learning methods can provide a more accurate and efficient tool to predict droughts and be used in drought risk management. the review of sources shows that until now no studies have been conducted in the field of drought monitoring using deep learning approach and satellite images in the catchment area of lake urmia in iran. a large part of its economic activities is dedicated to agriculture. the increase in temperature, the increase in evaporation-transpiration and the excessive use of water resources for agriculture have caused an upward trend in the frequency of droughts in this basin during consecutive years, one of the harmful effects of which is a significant decrease in the lake level. therefore, for drought management in this basin, it is very important to identify drought behavior so it is very important to determine appropriate and reliable indicators to measure and predict the effects of droughts. according to the investigations, it was observed that most of the studies in the field of drought in this basin have been carried out from the meteorological point of view, or by individual plant indicators, so in this study, using the approach of principal component analysis, we tried to provide a composite drought index for drought modeling and forecasting. materials and methodsin this research, satellite images and deep learning and machine learning methods have been used to predict the combined drought index. for this purpose, satellite images were first obtained for the study area and pre-processing was done on the data. then, all the data were converted to a scale with a spatial resolution of 500 meters, and the vci index was calculated using ndvi data, the tci index using the land surface temperature product, and the cwsi index using the modis evapotranspiration product, and finally, cdi drought index was calculated using principal component analysis method. then the correlation between cdi data and other meteorological variables including evapotranspiration, potential evapotranspiration, land surface temperature during the day, and land surface temperature at night was calculated. finally, the cdi index is modeled using deep learning and machine learning methods. results and discussionthis study modeled the combined drought index based on a different combination of input variables and deep learning and machine learning methods. examining the results showed that the variables of the normalized difference vegetation index, the land surface temperature during the day and at night, evapotranspiration, and potential evapotranspiration were the most influential parameters for modeling the cdi index, and all four methods with acceptable accuracy and error have been able to model the combined drought index. the cart model with a correlation coefficient of 0.96, rmse equal to 0.029, and nash sutcliffe coefficient of 0.92 was chosen as the best model among the methods. conclusionin this research, different combinations of input variables extracted from satellite image products were evaluated in the form of 6 independent scenarios to predict the combined drought index. by examining the evaluation parameters including correlation coefficient, nash sutcliffe coefficient, and root mean square error, it was found that all four methods can estimate the combined drought index with acceptable accuracy and error. among all the methods, the cart method performed better (r=0.96 and rmse=0.029) than the other methods for predicting the time series of the combined drought index. on the other hand, the svm method has been able to model the combined drought index with acceptable accuracy (r=0.94 and rmse=0.034). however, contrary to expectations, two deep learning methods were able to model the combined drought index with less accuracy than machine learning methods. in general, by examining the results, it was found that with the method presented in this research, it is possible to accurately predict the cdi combined drought index time series and predict drought in different periods of plant growth, and use its results for regional drought management and policies, especially in basins without statistics.
|
Keywords
|
agricultural drought ,combined drought index (cdi) ,deep learning and machine learning ,satellite images
|
|
|
|
|
|
|
|
|
|
|