>
Fa   |   Ar   |   En
   مقایسه روش‌های یادگیری ماشین در انتخاب پیش‌بینی‌کننده‌های مدل‌های گردش عمومی جو-اقیانوسی برای ریزمقیاس‌نمائی دمای بیشینه (مطالعه موردی: بیرجند)  
   
نویسنده امیرآبادی زاده مهدی ,فروزان مهر مهدیه ,یعقوب زاده مصطفی ,حسین ابادی سعیده
منبع آب و خاك - 1402 - دوره : 37 - شماره : 1 - صفحه:129 -143
چکیده    افزایش غلظت گازهای گلخانه ای در اتمسفر باعث تغییرات زیادی در مولفه های اقلیمی کره زمین شده است که این تغییرات در پارامترهای اقلیمی به صورت افزایشی یا کاهشی است. امروزه تغییر اقلیم یکی از چالش‌های بشر در بهره‌برداری و مدیریت منابع آب است، همچنین شرایط کنونی آب و هوای جهانی نشان دهنده افزایش خطرات ناشی از پدیده خشکی در بسیاری از مناطق جهان در آینده است. مدل‌های گردش کلی جوی یکی از مهم‌ترین و پرکاربردترین روش‌ها در مطالعات تغییرات اقلیمی در مقیاس منطقه ای می‌باشد. یکی از اولویت های اصلی ریزمقیاس‌نمایی آماری انتخاب پیش‌بینی‌کننده ها به عنوان ورودی به مدل ریزمقیاس‌نمایی در پژوهش می باشد. برای انتخاب پیش‌بینی‌کننده های مهم از بین 26 متغیر جو بالا، از چهار الگوریتم یادگیری ماشین شامل لاسو، ستیغی، gbm، spsa در ریزمقیاس‌نمایی آماری دمای بیشینه در ایستگاه بیرجند استفاده گردید و عملکرد این روش‌ها با سه شاخص نش-ساتکلیف نسبی، کلینگ-گوپتا و بازده حجمی در بخش صحت‌سنجی مورد بررسی قرار گرفت. نتایج نشان داد که بیشترین میزان اهمیت برای مولفه سرعت نصف‌النهاری نزدیک سطح و کمترین مقدار آن در مولفه سرعت مداری در ارتفاع 500 هکتو پاسکال می باشد که مقادیر آن به‌ترتیب 73.2% و 15% تعیین شد. همچنین نتایج شاخص های ارزیابی عملکرد نش- ساتکلیف نسبی و کلینگ-گوپتا، نشان دادند که الگوریتم spsa دارای عملکرد بهتری از سایر الگوریتم ها درانتخاب پیش‌بینی‌کننده ها و به تبع آن ریزمقیاس‌ نمائی دمای بیشینه می باشد. مقایسه میانگین و واریانس خروجی ریزمقیاس شده توسط الگوریتم های مورد استفاده و داده های مشاهداتی در بخش صحت‌سنجی نشان داد که الگوریتمspsa  نسبت به سایر الگوریتم ها در باز تولید میانگین و واریانس دمای بیشینه مشاهداتی در ایستگاه سینوپتیک بیرجند دارای توانایی بیشتری می باشد.
کلیدواژه الگوریتم یادگیری ماشین، پیش بینی کننده، شهرستان بیرجند، مدل گردش عمومی جو- اقیانوس
آدرس دانشگاه بیرجند, گروه علوم و مهندسی آب، گروه پژوهشی خشکسالی و تغییر اقلیم, ایران, دانشگاه بیرجند, دانشکده کشاورزی, ایران, دانشگاه بیرجند, گروه علوم و مهندسی آب، گروه پژوهشی خشکسالی و تغییر اقلیم, ایران, دانشگاه بیرجند, دانشکده کشاورزی, ایران
پست الکترونیکی saeide.hoseinabadi@birjand.ac.ir
 
   comparison of machine learning methods in the selection of predictors of atmospheric-ocean general circulation models  
   
Authors amirabadizadeh m. ,frozanmehr mahdieh ,yaghoobzadeh m. ,hosainabadi saeideh
Abstract    introductionnowadays, climate change is one of the human challenges in the exploitation and management of water resources. temperature along with precipitation is one of the most important climatic elements and is one of the main factors in zoning and climatic classification. due to location of iran within the drought belt and proximity to the high-pressure tropical zone, this country has an arid and semi-arid climate and suffers from drought in majority of years. therefore, temperature fluctuations and variability are important issues, and make the study of temperature changes a necessity. in the current study, four data mining algorithms in selecting predictors for downscaling of maximum temperature in birjand synoptic station have been studied, compared and the superior algorithm has been introduced. as the number of large scale features are high, selection of machine learning algorithm will play as an important role in statistical downscaling of climatic variables such as maximum temperature. materials and methodstoday, the data set is such that many variables are used to describe the climatic phenomenon in environmental studies. as the number of data is huge, choosing the predictors is one of the most important steps in preprocessing machine learning. in this study, four machine learning methods including stochastic approximation of simultaneous turbulence (spsa), least absolute shrinkage and selection operator (lasso), ridge and gradient boosting method (gbm) in selecting important features in downscaling of maximum temperature in birjand synoptic station during the statistical period of 1961-2019 were studied and compared. it is a mechanism to find a combination of predictors that with a minimum number of predictors can produce an acceptable evaluation index in estimating the variable under study. for the present study, the weather information of birjand synoptic meteorological station has been prepared by the meteorological organization of iran. in order to calibrate and validate the machine learning algorithms, 70% and 30% of the available monthly data, respectively, were allocated for this purpose. to conduct this research, coding in r-studio environment and caret and fscaret packages were used. in this study, to evaluate the performance of the algorithms, three indices includes relative nash-sutcliffe efficiency (rnse), volume efficiency (ve) and kling-gupta efficiency (kge) were used.results and discussionbefore using the algorithms in selecting large-scale predictors, the correlation between these variables and the maximum observational temperature at birjand station was investigated. large scale variables mslp, p1_v, p8_v, p8_u, p850 temp, with a maximum correlation temperature of 0.6 showed that the correlation is acceptable given the complexity of the climate change phenomenon. in addition, these results show that all the algorithms used the important factors including f1, f2, f15, f16, f18, f20 and f26 by more than 50% and the first variable (mean pressure at the ocean surface) was the most important parameter in downscaling of maximum temperature. also, the highest importance was for p1_v and the lowest value related to p5_u, as 73.2% and 15%, respectively. violin plots of downscaled maximum temperature in validation step of different algorithms along with the observed maximum temperature in birjand synoptic station in each of the algorithms showed that the values of the first and third quartiles in the output data of spsa algorithm compared to other algorithms were closer to the observed data. according to the evaluation criteria, spsa algorithm has a higher performance than other algorithms in reproducing the maximum monthly temperature values in birjand synoptic station. also, based on the volumetric efficiency evaluation criteria and relative nash-sutcliffe, gbm algorithm was more successful in selecting predictors than ridge and lasso algorithms. it is also observed that spsa algorithm shows different results than other algorithms. in comparison of mean and variance of downscaled and observed maximum temperature, the results of t-test and f-test showed that spsa algorithm has higher efficiency than other algorithms in regenerating mean and variance of observed maximum temperature in birjand synoptic station at the 5% significance level.conclusionthe data used in this study included large scale atmospheric variables and the maximum observed temperature at birjand station. the algorithms were used to select important predictors and the performance of these methods in the validation part. according to the results of this study, the highest importance among large-scale variables is related to p1_v and the lowest value is related to p5_u, the values of which were 73.2% and 15%, respectively. the spsa algorithm also performs better than other algorithms in selecting predictors and consequently the maximum temperature.
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved