|
|
معرفی شاخص جدید کیفیت منابع آب سطحی جهت مصارف شرب با استفاده از روشهای چندمتغیره آماری (مطالعه موردی: رودخانه سفیدرود)
|
|
|
|
|
نویسنده
|
محمدی قلعه نی مهدی ,کاردان مقدم حمید
|
منبع
|
آب و خاك - 1401 - دوره : 36 - شماره : 4 - صفحه:439 -458
|
چکیده
|
هدف از تحقیق حاضر توسعه و معرفی یک شاخص جدید کیفیت آب شرب (sdwqi)، با استفاده از پارامترهای کیفی اندازهگیری شده در ایستگاههای هیدرومتری رودخانه سفیدرود است. به این منظور 12 پارامتر کیفی ماهانه شامل کل مواد جامد محلول (tds)، هدایت الکتریکی (ec)، سختی کل (th)، اسیدیته (ph)، کلر (cl-)، سولفات (so4-2)، کربنات (co3-2)، بیکربنات (hco3-)، منیزیم (mg2+)، سدیم (na+)، کلسیم (ca2+) و پتاسیم (k+) طی دوره آماری 1366-99 در ایستگاههای هیدرومتری رودبار و آستانه واقع در رودخانه سفیدرود استفاده شده است. پس از پردازشهای اولیه روی دادهها مانند تحلیل همبستگی پارامترها، از روشهای چندمتغیره آماری مانند خوشهبندی و تجزیه به مولفههای اصلی (pca) به منظور انتخاب و وزندهی پارامترهای کیفیت آب با استفاده از بستههای “cluster” و “factoextra” در نرمافزار r 4.1.1 برای توسعه شاخص جدید کیفیت آب استفاده شده است. نتایج شاخص جدید توسعه داده شده با شاخص کیفیت آب شرب سازمان بهداشت جهانی (who) و دستهبندی کیفیت آب شرب شولر مقایسه شده است. وزندهی پارامترها با استفاده از روش pca حاکی از اختصاص بیشترین و کمترین وزن به ترتیب به پارامترهای tds و k+ و برابر 0.163 و 0.031 میباشد. همچنین نتایج حاکی از پوشش 59.3 و 67.6 درصدی مولفههای اصلی اول و دوم از واریانس تغییرات کل پارامترهای کیفیت آب مورد بررسی به ترتیب در ایستگاههای رودبار و آستانه میباشد. نتایج دستهبندی کیفیت آب بیانگر قرار گرفتن به ترتیب (40.5، 16.4 و 23.7 درصد) و (90.1، 73.1 و 57.3 درصد) دادههای ایستگاههای رودبار و آستانه در ردهی خوب و عالی جهت مصارف شرب بر اساس دستهبندی شولر، شاخص who و شاخص جدید میباشد.
|
کلیدواژه
|
ایستگاه هیدرومتری، پارامترهای کیفیت آب، خوشهبندی، رودخانه سفیدرود، شاخص کیفیت آب
|
آدرس
|
دانشگاه اراک, دانشکده کشاورزی و محیط زیست, گروه علوم و مهندسی آب, ایران, موسسه تحقیقات آب، وزارت نیرو, ایران
|
پست الکترونیکی
|
hkardan@ut.ac.ir
|
|
|
|
|
|
|
|
|
introducing a new drinking water quality index for surface water resources using multivariate analysis (case study: sefidroud river)
|
|
|
Authors
|
mohammadi ghaleni m. ,kardan moghaddam h.
|
Abstract
|
introductionthe water quantity and quality has always been one of the main challenges in the issue of allocating water resources for different uses. water quality management requires the collection and analysis of large amounts of water quality parameters that will be evaluated and concluded. many tools have been found to simplify the evaluation of water quality data, and the water quality index (wqi) is one of these widely used tools. in summary, the wqi can be defined as a number obtained from the combination of several quality parameters based on standards for its extraction. the aim of this study was to develop and introduce the new surface water drinking water quality index (sdwqi) adopt the water quality parameters measured on hydrometric stations of iran. in developing this index, criteria such as the availability of required parameters in most rivers and simple and accurate methods have been considered. also, the ability to calculate with the minimum general parameters of water quality, simple calculations and in terms of the international standard who for drinking is one of the advantages of the introduced index.materials and methodsfor this purpose, 12 water quality parameters including total dissolved solids (tds), electrical conductivity (ec), total hardness (th), ph, chloride (cl-), sulfate (so42-), carbonate (co32-), bicarbonate (hco3-), magnesium (mg2+), sodium (na+), calcium (ca2+) and potassium (k+) have been used from rudbar and astaneh hydrometric stations located on sefidroud river. then initial preprocessing on data e.g. correlation analysis, and multivariate statistical methods including cluster analysis (ca) and principal components analysis (pca) are used to selecting and weighting of water quality parameters using the “clustering” and “factoextra” packages in r 4.1.1. in order to develop the sdwqi were performed four steps including, parameter selection, sub-indexing, weighting and aggregation of the index. also, in order to evaluate the index of the present research, the results of the sdwqi have been compared with the who drinking water quality index and schoeller drinking water quality classification.results and discussioncorrelation analysis between water quality parameters shows a significant correlation between tds, ec and th parameters and also with cl-, ca2+ and mg2+ parameters at the level of 1% in both astaneh and rudbar stations. on the other hand, the lowest values of pearson correlation coefficient are related to ph and co32- parameters with other quality parameters. the results of ca indicate that most of the water quality parameters are located in separate clusters. so only the parameters tds, ec, cl- and na+ in both rudbar and astaneh stations are in the same cluster. the weights of the parameters showed that tds and k+ are assigned with the highest and lowest weights equal to 0.163 and 0.031 based on pca method. also, pca results show that first and second principal components covered 59.3% and 67.6% of the total variance of measured water quality parameters in rudbar and astaneh stations, respectively. water quality classification results indicate that (40.5%, 16.4% and 23.7%) and (90.1%, 73.1% and 57.3%) of data in rudbar and astaneh stations, respectively, fell into the excellent and good categories for drinking purposes based on schoeller classification, whowqi and sdwqi.conclusiongenerally, the comparison of the sdwqi with the who index and the schoeller classification shows the rigidity of the new index in the classification of water quality for drinking purposes. each water quality index developed in order to evaluate the uncertainty of results, should be tested for data with different characteristics in terms of the range of variation with different limit values (minimum and maximum).
|
Keywords
|
clustering ,hydrometric stations ,principal component analysis ,sefidroud river ,water quality
|
|
|
|
|
|
|
|
|
|
|