>
Fa   |   Ar   |   En
   کارایی نیتریلوتری استیک اسید در آبشویی و پالایش کادمیوم از خاک توسط گیاه ذرت  
   
نویسنده محراب نرگس ,چرم مصطفی ,نوروزی مصیر مجتبی
منبع آب و خاك - 1399 - دوره : 34 - شماره : 3 - صفحه:593 -608
چکیده    با توجه به پیامدهای آلودگی فلزات سنگین در محیط زیست، آلودگی زدایی این فلزات از اهمیت بالایی برخوردار است. در این تحقیق کارایی کلات کننده نیتریلوتری استیک اسید (nta) بر آبشویی کادمیوم و جذب آن توسط گیاه ذرت در یک خاک آلوده در آزمایشی گلخانه ای بررسی گردید. در این مطالعه از سه سطح کادمیوم (0، 25 و 50 میلی گرم بر کیلوگرم خاک) و سه سطح کلات nta (0، 15 و 30 میلی مول در لیتر در گلدان 8 کیلوگرمی) در خاکی با بافت لومی در کشت و عدم کشت گیاه ذرت و تحت شرایط سه دور آبیاری استفاده گردید. nta طی سه مرحله بصورت محلول به گلدان ها اضافه گردید. نتایج نشان داد که با افزایش سطح آلودگی کادمیوم و مقدار nta مصرفی، میزان کادمیوم زه آب و همچنین جذب کادمیوم توسط گیاه ذرت افزایش یافت. سطوح مختلف کادمیوم و nta در دور اول آبشویی اختلاف معنی داری در کادمیوم شسته شده نشان دادند و در دو دور بعدی تفاوت قابل ملاحظه ای دیده نشد. میزان کادمیوم آبشویی شده از خاک گلدان های بدون کشت گیاه در تیمار 50 میلی گرم بر کیلوگرم کادمیوم با کاربرد 15 و 30 میلی مول nta نسبت به عدم کاربرد nta به ترتیب 8 و 15.4 برابر افزایش داشت. درصورتی که در تیمارهای مشابه در حضور گیاه ذرت، میزان آبشویی کادمیوم در خاک به ترتیب 5.8 و 6 برابر نسبت به عدم کاربرد nta افزایش نشان داد. کادمیوم جذب شده توسط گیاه ذرت در تیمارهای حاوی 50 میلی گرم بر کیلوگرم کادمیوم در کاربرد 30 میلی مول nta حداکثر بوده و این مقدار 57 درصد بیش از عدم کاربرد nta اندازه گیری شد. nta با کاهش در ph خاک و انحلال کربنات کلسیم از خاک بر افزایش کادمیوم آبشویی شده و کادمیوم جذب شده توسط گیاه اثر معنی داری نشان داد. این نتایج به خوبی اثر توام nta و گیاه ذرت در پالایش کادمیوم از خاک آلوده را نشان می دهد.
کلیدواژه آبشویی، کادمیوم خاک، گیاه پالایی، نیتریلوتری استیک اسید (Nta)
آدرس دانشگاه شهید چمران اهواز, گروه علوم و مهندسی خاک, ایران, دانشگاه شهید چمران اهواز, گروه علوم و مهندسی خاک, ایران, دانشگاه شهید چمران اهواز, گروه علوم و مهندسی خاک, ایران
 
   Efficiency of Nitrilo Triacetic Acid (NTA) on Leaching and Refining of Cadmium from Soil by Maize  
   
Authors Norouzi Masir Mojtaba ,Chorom Mostafa ,Mehrab N.
Abstract    Introduction: Decontamination of heavy metals (HMs), especially cadmium (Cd) which has high mobility in the soil, is very important due to the effects of HMs pollution on the soil, environment, and human. Numerous efforts have been made to develop technologies for the remediation of contaminated soils, including exsitu washing with physicalchemical methods, and the insitu immobilization of metal pollutants. These methods of clean up are generally very costly, and often harmful to properties of the soil (i.e., texture, organic matter, microorganisms). Recently, the phytoremediation of HMs from contaminated soils has attracted attention for its low cost of implementation and many environmental benefits. Several chelating agents, such as DTPA, EDTA, and NTA, have been studied for their ability to dissolve metals, leach heavy metals, and enhance the uptake of metals by plants. Although many researchers have reported that EDTA is excellent solubilizing agents for HMs from contaminated soils, it is quite persistent in the environment due to the low biodegradability. Hence recently the easily biodegradable chelating agent NTA has been proposed to enhance the uptake of HMs in phytoremediation as well as the leaching of HMs from the soil. Therefore, in the present study attempts are made to investigate the effect of applicability NTA in Cd leaching and the refining of Cd from contaminatedsoil by maize.Materials and Methods: In this research, the effect of NTA on Cd leaching and its absorption by maize in contaminatedsoil in a greenhouse experiment were investigated. The experiment was a factorial experiment based on a completely randomized design. The treatments consisted of three levels of Cd contamination (0, 25 and 50 mg kg1soil) and three levels of NTA (0, 15 and 30 mmol per pot) in loamy soil and in the cultured and noncultured conditions under three irrigation conditions. The soil was contaminated with cadmium chloride (CdCl2.2.5H2O). Nitrogen, phosphorus, and potassium (in the form of urea, triple superphosphate and potassium phosphate, respectively) were added to the pots. NTA was added in three steps to the pots. The first step of adding NTA was beginning 4 weeks after cultivation, occurring approximately once in 14 days. Also, 7 days after adding NTA, the pots were irrigated with an amount corresponding to 20% more water than the moisture of soil saturation condition. The drainage water collected from each irrigation event was kept in a refrigerator at 5°C prior to Cd analysis. The plants were cut about 5 mm above the soil surface after 10 weeks of maize growth and were dried for analyzing Cd in the plant. Analysis of variance was used to study the effects of different treatments of Cd and NTA on Cd contents in drainage water, plant, and soil. Statistical analysis were performed using SPSS. Means of treatments were compared using Duncan’s Multiple Range Test (DMRT) and the graphs were plotted in Excel.Results and Discussion: The contrasting impact between irrigation rounds and Cd treatments, as well as NTA treatments on Cdtotal leached was significant (P lt;0.05). The highest Cd leached was in 50 mgCd kg1soil (Cd50) and 30 mmol NTA (NTA30) in the first irrigation round. In the next two rounds, the Cd leached from the soil was inconsiderable. Different levels of Cd and NTA showed a significant difference in Cd concentration in the first round of leaching. In noncultivated pots, the amount of Cd leaching in Cd50NTA15 and Cd50NTA30 treatments increased by 8 and 15 times, respectively than that in Cd50NTA0 treatment. In the case of similar treatments in the presence of maize, the Cd leaching rate increased by 5.8 and 6 times, respectively, than that in (NTA0). Cd absorbed by maize in (Cd50, NTA30) was maximum and that measured 58% more than that in (Cd50, NTA0), while dry weight decreased significantly (30% in the shoot and 40% in the root). After the cultivation and leaching process, the maximum amount of DTPAextractable Cd was observed in (Cd50, NTA0). While using (NTA15, NTA30) at the same level of Cdcontamination (Cd50), there was a significant decrease in DTPAextractable Cd (due to the increase in Cd dissolved, Cd leached and Cd absorbed by plants). Due to pH between 23 and EC about 2.53.5 in NTA solutions, the application of NTA in soil decreased pH and increase EC in the soil. On the other hand, the decrease in pH of soil increased solubility of calcium carbonate equivalent (CCE), thereby reduced CCE in the soil. The results of this study showed that the soil pH was effective on HMs absorption by plants, therefore the availability of Cd after the use of NTA may be due to the decrease of alkalinity in the soil. The presence of organicmetal bonds in chelatemetal compounds causes metals to be less exposed to colloids, hydroxides, and oxides thus will prevent their stabilization in the soil. So it can be said that one of the effective methods for increasing the absorption of HMs from the soil by the plant is to reduce the pH of the soil. Some of the soil properties, such as pH and total heavy metal concentration, improves the efficiency of the chelator agent.Conclusion: The results showed that an increase in the amount of Cd contamination and NTA applied increased Cd content in drainage water and Cd which was uptake by maize. Also, results showed well, the combined of maize planting and the use of NTA is successful in refining Cd from contaminatedsoil. It seems that Adding NTA as a natural chelator in Iranian calcareous soils can increase the dissolution of Cd and extract it from the soil during a leaching period without contamination of the environment, as well as increase the efficiency of removing Cd by maize.
Keywords
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved