>
Fa   |   Ar   |   En
   قابلیت طیف‌سنجی مرئی مادون قرمزنزدیکVis-Nir) ) در پیش‌بینی درصد ذرات خاک با استفاده از شبکه عصبی مصنوعی و رگرسیون حداقل مربعات جزئی  
   
نویسنده مهرابی گوهری الهام ,متین فر حمید رضا ,تقی زاده مهرجردی روح الله ,جعفری اعظم
منبع آب و خاك - 1399 - دوره : 34 - شماره : 3 - صفحه:623 -635
چکیده    طیف‌سنجی مرئی و مادون قرمز نزدیک (visnir) به طور گسترده ای برای تخمین خصوصیات فیزیکی خاک و اخیرا برآورد بافت خاک استفاده می شود. مطالعه حاضر با هدف پیش‌بینی احتمالی بافت خاک با استفاده از اندازه گیری های طیفی و مدل‌های شبکه عصبی مصنوعی و رگرسیون حداقل مربعات جزئی انجام گرفته است. بر اساس تکنیک هایپرکیوب، محل 115 پروفیل شناسایی و سپس نمونه برداری از افق‌های خاک انجام گرفت، درصد شن و رس و سیلت نمونه‌های خاک اندازه‌گیری شد. رگرسیون حداقل مربعات جزئی (plsr) و شبکه عصبی مصنوعی (ann) برای مدل‌سازی درصد رس، شن و سیلت خاک مقایسه شدند. نتایج این بررسی نشان داد که شبکه عصبی مصنوعی نسبت به رگرسیون حداقل مربعات جزئی کارایی بهتری داشت، برای هر دو مدل از محدوده خاصی از طول موج (بین 400 2450 میکرون با اعمال پیش‌پردازش‌ها و حذفیات یکسان) استفاده گردید. هنگامی که مدل رگرسیون مربعات جزئی اجرا شد، دقت بسیار پایینی داشت (r2 ~0.10.3)، در مقابل، روش شبکه عصبیمصنوعی مقدار r2 به ترتیب برای رس، شن و سیلت 0.70, 0.76و 0.73 بود و میانگین ریشه مربعات خطا به ترتیب 9.14، 5.54 و 7.01 گرم بر کیلوگرم براساس داده‌های آزمون (20 درصد) به دست آمد که نشان دهنده دقت بالاتر و خطای کمتر مدل شبکه عصبیمصنوعی می‌باشد. از آنجایی که رابطه بین درصد ذرات خاک و بازتاب طیفی خاک خطی نیست، به نظر می‌رسد روش شبکه عصبیمصنوعی برای بررسی و تجزیه و تحلیل رابطه بین اجزای بافت خاک و داده‌های طیفی مناسب باشد.
کلیدواژه رگرسون حداقل مربعات جزئی، پیش بینی، مدل سازی، طیف سنجی مرئی مادون قرمز، شبکه عصبی مصنوعی
آدرس دانشگاه پیام نور, گروه کشاورزی, ایران. دانشگاه لرستان, ایران, دانشگاه لرستان, دانشکده کشاورزی, گروه علوم خاک, ایران, دانشگاه اردکان, دانشکده کشاورزی و منابع طبیعی, گروه علوم خاک, ایران, دانشگاه شهید باهنر کرمان, دانشکده کشاورزی, گروه علوم خاک, ایران
 
   Visible-Near Infrared (VIS-NIR) Spectrophotometry in Predicting Soil Particle Percentage Using Artificial Neural Network and Partial Least Squares Regression  
   
Authors Jafari A. ,Mehrabi Gohari E. ,Matinfar H.R. ,Taghizadeh-Mehrjardi R.
Abstract    Introduction: Soil texture is the most important environmental variable because it plays a very important role in reducing the quality of land and water transfer processes, soil quality control and fertility. On the one hand, soil texture components are the basis of environmental predictive models and digital mapping of soil and on the other hand, soils are temporally and spatially variable, thus distinguish zoning and their monitoring with traditional sampling methods and laboratory analysis is very costly and time consuming. As a result, the development of methods for analyzing the soil and for required information has become very important. Visible and near infrared spectroscopy (VISNIR) is widely used to estimate soil physical properties and estimate soil texture. The present study aims to predict soil texture using spectral measurements and artificial neural network models and partial least squares regression.Materials and Methods: The study area in southeastern Iran is approximately 70 km from Kerman. In the study area, based on the hypercube technique, 115 profiles were identified and then horizons were sampled. In this way, for each point of study, the necessary information, including the location of the profile on the ground, the type of geomorphic unit and the type of materiel, were recorded and taken from the horizons of each profile. In all soil samples, after drying and passing through 2 mm soil, the soil texture was measured by hypercube. Spectral radiometer was used to measure the spectral reflection of soil samples. The soil samples were air dried and sieved and then placed in a petri dish with an approximate diameter of 10 cm and transferred to the dark room for spectral analysis. Each specimen was tested four times (for each 90 degree sequential rotation) to remove the effects of a change in the radiation geometry. Soil samples were scanned, and absolute reflections at a spectral range of 2500350 nm yielded 2150 spectral data points (SDPs) per soil sample with a spectral resolution of one nanometer. Finally, to construct a suitable model for forecasting the percentage of clay, sand, and silt, the least squares model was used with the number of factors 1 to 10 by Artificial Neural Network (ANN) modeling using JMP software Work.Results and Discussion: The reflectance spectrum of the visible range near infrared was measured for specimens. Since preprocessing of spectral data has an effective role in improving the calibration, in order to perform spectral preprocessing, two first nodes of the first and the end of the spectra were first removed in the range of 350400 and 24502500 nm. In addition, the interruption due to the change in the detector in the range of 900 to 1000 nm was also eliminated. Types of preprocessing methods were performed on spectral data. Then, using partial least squares regression analysis, the best model was produced when the first derivative was fitted to reflection values. The explanation coefficients for this low and unacceptable model were obtained. Therefore, using partial least squares regression analysis, the best wavelengths were selected to predict the percentage of clay, sand, soil, and extracted from the model. Then it was used as input in the neural network model. To determine the best combination, root error index and error coefficient were used. The results of artificial neural network showed that the number of neurons 9.8 and 10 had the best composition for predicting clay, sand and soil silt. The rootsquared error results for clay, sand, and soil silt were 3.42, 6.94, and 4.383 respectively. Also, the results of the explanatory factor were 0.84, 0.83 and 0.81, respectively. After obtaining the optimal structure in the artificial neural network training phase described above, the trained network has been tested on the test data to determine the accuracy of this model to predict clay, sand and silt of surface soil. The rootsquared error results for clay, sand and silt components were obtained at 5.54.9.14 and 7.01. Also, the results of the explanatory factor were 0.76.0.70 and 0.73 respectively. The best result of the prediction for partial least squares regression was obtained for the sand sample. The results indicate that the neural network performance is better than partial least squares regression, which is consistent with Mouazenet. al (2010) and also ViscarraRossel R. et. al (2009). Acceptable performance of the artificialneural network can be attributed to the ability of this model for nonlinear behavior of soil texture in visible spectroscopy. In this study, specific wavelengths, which Ben Finder et al. (2003) obtained in the study on the soils of Israel, were used. This conclusion confirms that various types of soil can be modeled using specific wavelengths. The advantage of this study is that, when using the artificial neural network, no preprocessing of reflection data is required before applying the model. Since the relationship between the percentage of soil particles (clay and gravel) and the reflection of the soil is not linear, the neural network method is very useful for analyzing the relationship between soils. Finally, the map of clay, sand and silt and map of soil texture was prepared by artificial neural network method in GIS environment.Conclusion: The results of this study showed that the neuraldynamic network has a better performance than partial least squares regression. Calibration models designed and used in this study can be transported for use with other soils. When the partial least squares regression model was implemented, it had a very low accuracy (R2 ~ 0.10.3); on the contrary, the neural networkbased method had high accuracy and less error. Note that although neuraldynamic modeling estimates higher precision results from soil texture, both approaches depend on wavelength selections, and so wavelengths should be selected before using any of the two models. To be finally, a meaningful relationship between the selected wavelengths and the percentage of clay, sand and silt in the present study indicates that soil texture is not only possible but also reliable by reflection spectroscopy.
Keywords
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved