|
|
بررسی عملکرد سیستم مخازن ذخیره منفرد با استفاده از شاخصهای عملکرد (مطالعه موردی: سد مخزنی لار)
|
|
|
|
|
نویسنده
|
احمدیان مونا ,منتصری مجید
|
منبع
|
آب و خاك - 1398 - دوره : 33 - شماره : 6 - صفحه:795 -809
|
چکیده
|
سیستم مخازن ذخیره برای کنترل و تنظیم رژیم جریان رودخانه ها جهت تامین تقاضا برای مصارف مختلف شرب، کشاورزی و . . . طراحی و احداث میگردند. در این مطالعه سد مخزنی لار بهعنوان یکی از منابع اصلی تامین آب شرب تهران با استفاده از روش شبیهسازی مونتکارلو مورد تجزیه و تحلیل قرار گرفته است. بدین منظور با بهکارگیری مدل استوکاستیک ar(1)، دادههای جریان سالیانه تولید و سپس مقادیر جریان سالیانه با استفاده از مدل توزیعی والنسیا-شاکی در ماههای مختلف سال پخش یا توزیع شده است. در مرحله بعد، دادههای ماهیانه تولیدی بهعنوان جریانات ورودی به مخزن ذخیره برای شبیهسازی رفتار سد مخزنی لار با استفاده از روش 3modified-spa و با اعمال شاخصهای عملکرد سیستم مخازن بهکار گرفته شد. نتایج مطالعه نشان میدهد که حجم ذخیره علاوه بر تقاضا، تابعی از تلفات ناشی از تبخیر و ضرایب اعتماد زمانی و آسیبپذیری بوده و از یک رابطه نمایی بهازای تقاضا تبعیت میکند. علاوه بر این در هر سه گونه (version) spaهای اصلاح شده (spa-i, spa-ii, and spa-iii) دو شاخص عملکرد مخزن، یعنی؛ اعتمادپذیری زمانی و آسیبپذیری قابل کنترل در تحلیل بوده و تحلیل سیستم ذخیره برای مقادیر معلوم یا مشخص شاخصهای مذکور انجام میپذیرد. همچنین در روشهای spa-ii و spa-iii امکان استفاده از رابطه غیرخطی یا رابطه واقعی سطححجم در برآورد حجم تلفات ناشی از تبخیر در سیستم ذخیره است. کنترل دو شاخص عملکرد مخزن و بهکارگیری رابطه واقعی یا غیرخطی سطح حجم مخزن در تحلیل سیستم مخازن ذخیره بههمراه جواب یکتا بهعنوان مزیتهای اساسی و بسیار مهم روشهای مذکور نسبت به روش آنالیز رفتاری (فرض خطی بودن رابطه سطححجم مخزن و کنترل تنها شاخص اعتمادپذیری در محاسبات) است.
|
کلیدواژه
|
تولید داده، روش spa، سد مخزنی لار، شبیه سازی مخزن، مدل استوکاستیک
|
آدرس
|
دانشگاه ارومیه, دانشکده کشاورزی, گروه مهندسی آب, ایران, دانشگاه ارومیه, دانشکده کشاورزی, گروه مهندسی آب, ایران
|
پست الکترونیکی
|
m.montaseri@urmia.ac.ir
|
|
|
|
|
|
|
|
|
Using Reservoir Performance Indices for Evaluating the Lar Storage Dam Behavior
|
|
|
Authors
|
ahmadian m ,Montaseri M.
|
Abstract
|
Introduction: In recent decades, with increasing the world population and demand for fresh water for various applications (drinking, agriculture and industry), planning, management and optimal utilization of surface water reservoirs, especially in arid and semiarid regions, have become the most serious challenges faced by researchers and water industry professionals in many parts of the world. In surface water reservoirs, uncontrolled flow is stored in wet periods for use in low flow periods. Therefore, surface water storage dams are created to control and regulate the flow of rivers in order to meet demand for different uses at a certain level of performance indices. During the process of storing water in the reservoirs, the uncontrolled flows of the input into the reservoir are in three ways: yield or output adjusted to meet demand for various uses, infiltration loss and evaporation from the surface of the lake and spill of excess water in a reservoir that is part of an uncontrollable flow. The proposed methods of storageyieldperformance of the storage system are classified into two main groups, simulation and optimization methods, which are widely used to analyze the reservoirs system for storing surface water. Among two final methods of simulation i.e. the behavior analysis method and the modified Sequent Peak Algorithm (SPA) method, all the actual conditions governing the system of storage reservoirs, including control of indices of reliability and vulnerability in the storageyieldperformance, are required to apply SPA. The basic SPA simulation method has been proposed as a computational method for the mass curve, and major improvements have been made to increase its functionality and efficiency at the late 20th century. The first amendments to apply the effects of evaporation losses and performance indices; timebased reliability and vulnerability, were carried out by Lele (1987). Then, Montaseri (1999) developed the SPA method for the system of multiple storage reservoirs and used nonlinear or real areavolume relationship for applying losses caused by evaporation.;Materials and Methods: Stochastic models provide the possibility of generating successive hydrological time series (such as rainfall and flow) that are likely to occur in the future. On the other hand, the analysis of longterm behavior of various water resources systems, especially the storage system, depends on the availability of expected river flow time series in the years to come. Therefore, the use of stochastic models and the production of artificial data are absolutely necessary for the accurate evaluation of the design, operation and optimal management of the storage system and the elaboration of their longterm behavior. For this purpose, using a single distributed stochastic model, 1000 series of annual and monthly flows of input into the storage reservoir were generated and then the series of monthly flows generated to simulate the storage reservoir system using the SPAI method and the reservoir performance indices (time reliability, resiliency and vulnerability) were also used for single reservoir system.;Results and Discussion: The results show that combining two stochastic AR(1) and ValenciaSchaake models had very good performance in preserving statistical data of historical data at two monthly and annual levels. This is the advantage and necessity of using the stochastic distributions model relative to other stochastic models such as ThomasFiering and ARMA in analyzing the storage reservoirs systems. The behavior of the reservoir system or the critical period in addition to demand, depends on system performance indices and decreases the critical period by decreasing timebased reliability or increasing the vulnerability factor. The results also indicate nonlinear (exponential) changes in the critical period and demand at a certain level of performance indices. Moreover, evaporation loss changes for demand and a certain level of performance indices have a concave shape, with a reversing point consistent with the largest withinyear storage system. With a decrease/ an increase demand and volume of storage, the amount of evaporation losses increased exponentially and accounted for a considerable percentage of the reservoir apos;s storage capacity.;Conclusion: The results revealed that volume of storage in addition to demand is a function of evapotranspiration losses and timebased reliability and vulnerability indices and follows an exponential relation for demand. In addition, in all three variants of the modified SPAs (SPAI, SPAII, and SPAIII), two performance indices of the reservoir, namely timebased reliability and vulnerability, are controllable in analysis, and the storage system analysis is performed for specified values or mentioned indices. Also, in the SPAII and SPAIII methods, it is possible to use a nonlinear or a real arevolume relationship to estimate the loss of evapotranspiration in the storage system. Control of two performance indices of the reservoir and the application of real or nonlinear areavolume relationship in the analysis of reservoir system reservoir are important advantages of the above methods to the behavior analysis method.
|
Keywords
|
|
|
|
|
|
|
|
|
|
|
|