>
Fa   |   Ar   |   En
   تاثیر ریزوبیوم بر تولید گلومالین توسط Rhizophagus Irregularis در همزیستی با گیاه شبدر تحت سطوح نیتروژن  
   
نویسنده شعبانی زنوزق وحیده ,علی‌اصغرزاد ناصر ,مجیدی جعفر ,حاجی بلند رقیه ,برادران بهزاد ,عاقبتی مالکی لیلی
منبع آب و خاك - 1397 - دوره : 32 - شماره : 2 - صفحه:399 -413
چکیده    گلومالین یک ترکیب گلیکوپروتئینی ویژه است که توسط قارچ های راسته گلومرال از رده گلومرومایکوتا تولید می شود و نقش کلیدی در ذخیره کربن آلی و نیتروژن خاک دارد. همچنین در تشکیل خاکدانه های پایدار و استقرار جوامع غنی میکروبی در خاک نقش بسزایی دارد. آزمایشی در قالب طرح فاکتوریل در پایه بلوک‌های کامل تصادفی با سه تکرار طراحی شد و گیاه شبدر (trifolium repense l.)با قارچ rhizophagus irregularis و باکتری rhizobium leguminosarum bv. trifolii تلقیح شد. چهار سطح نیتروژن (0، 2, 6 و 10 میلی‌مولار به فرم نیترات) بوسیله محلول غذایی نیومن و رومهلد ایجاد شد. گلدان‌ها با محلول غذایی آبیاری شدند. گیاهان شبدر پس از 12 هفته برداشت شد. گلومالین در بستر شن (sg) و گلومالین ریشه‌ای (rg) پس از استخراج از خاک، به روش بردفورد اندازه گیری شد. با افزایش سطوح نیتروژن میزان sg به طور معنی‌داری کاهش یافت (0/01>p)؛ به طوری‌که در سطح دو میلی‌مولار 63/05 درصد کاهش در مقدار sg نسبت به تیمار شاهد بدون نیتروژن مشاهده گردید. در حضور باکتری ریزوبیوم تولید گلومالین sg توسط قارچ‌های آربوسکولار به طور معنی‌داری افزایش یافت (0/01>p). بیشترین مقدار گلومالین در بستر شنی در حضور باکتری ریزوبیوم و قارچ am و در سطح بدون نیتروژن بود. مقدار rg با افزایش غلظت نیتروژن افزایش پیدا کرد. در سطح 10 میلی‌مولار نیتروژن، rg نسبت به سطح صفر، 2 و 6 میلی‌مولار سرب به ترتیب افزایش 12/92، 11/91 و 1/44 درصدی داشت.
کلیدواژه آربوسکولار، باکتری ریزوبیوم، بردفورد، قارچ میکوریز گلومالین، نیتروژن
آدرس دانشگاه تبریز, دانشکده کشاورزی, گروه علوم و مهندسی خاک, ایران, دانشگاه تبریز, دانشکده کشاورزی, گروه علوم و مهندسی خاک, ایران, دانشگاه علوم پزشکی تبریز, دانشکده پزشکی, گروه ایمونولوژی, ایران, دانشگاه تبریز, دانشکده علوم طبیعی, گروه علوم گیاهی, ایران, دانشگاه علوم پزشکی تبریز, مرکز تحقیقات ایمونولوژی, ایران, دانشگاه علوم پزشکی تبریز, مرکز تحقیقات ایمونولوژی, ایران
 
   The Effect of Rhizobium on Glomalin Production by Rhizophagus irregularis in Symbiosis with Clover Plant under Different Levels of Nitrogen  
   
Authors Baradaran Behzad ,Majidi Jaffar ,Aghebati-Maleki Leili ,Aliasgharzad Nasser ,Hajiboland Roghaieh ,Shaabani Zenoozagh vahideh
Abstract    Introduction: Glomalin is a specific glycoprotein produced by the fungi belonging to phylum Glomeromycota and plays a key role in soil carbon and nitrogen storage. This also has a significant role in the stable aggregates formation and establishment of microbial communities in soil. Assimilated plant C which is allocated to the mycorrhizal fungus, appears as a recalcitrant glycoprotein (glomalin) in cell walls of hyphae and spores. Considering global warming due to increasing greenhouse gases, this phenomenon cab be important in carbon sequestration and reducing CO2 in atmosphere. Chemical fertilizers can affect symbiotic relations of these fungi, which in turn affect glomalin production. Materials and Methods: In a factorial completely randomized design with three replication, clover plants (Trifolium repense L.) were included with Rhizophagus irregularis and/or Rhizobium leguminosarum bv. Trifolii. Four levels of nitrogen (0, 2, 6 and 10 mM as nitrate) in Newman & Romheld nutrient solution were applied to the pots containing 1.5 kg sterile sand. The pots were daily irrigated with nutrient solution containing the abovementioned levels of nitrogen. Clover plants were excised after 12 weeks of growth. Fine roots were cleaned with %10 KOH and then stained using lactoglycerol trypan blue. Root colonization percentage was determined by grid line intersections method (GLM) described by Norrif et al (1992). For glomalin extraction, hyphal or root samples were autoclaved at 121 ⁰C with 50 mM sodium citrate buffer for 60 min in three cycles. Sand glomalin (SG) and root glomalin (RG) were measured by Bradford method after extraction. Nitrogen concentration in shoot and root was measured according to the standard method. Results and Discussion: By increasing nitrogen level, the SG significantly decreased (p < 0.01), and at 2 mM, a 63.5 % decrease in SG was observed with relative to the nitrogenfree control. In the rhizobial treated pots, SG production increased by fungal inoculation (p < 0.01). The interaction between bacteria and AM was also significant in production of SG. At the presence of rhizobium bacteria, glomalin production by AM fungi increased significantly. The changes of glomalin content were not impacted by the presence of bacteria in the uninoculated pots with fungi. The highest amount of SG was recorded in the coinoculated plants with nitrogenfree level. The amount of RG enhanced by increasing nitrogen concentration in nutrient solution. At 10 mM, RG increased by 12.90 %, 11.91 % and 1.44 % compared to the levels of 0, 2 and 6 mM, respectively. As the nitrogen level increased, the percentage of root colonization increased with respect to the control. Nitrogen concentration in shoot and root was enhanced by N increment to 10mM. Conclusion: Carbon sequestration via glomali synthase by AM fungi is an important pathway for capturing CO2 from atmosphere. Field management measures help AM development of glomalin production. Based on our results, coinoculated plants with AM and rhizobuim seem to positively affect the production of this glycoprotein. On the other hand, SG decreased significantly by increasing nitrogen concentrations in the nutrient solution. RG, however, increased significantly as a result of increased nitrogen in both fungal inoculations. The highest amount of RG was recorded in the coinoculated plants with 10mM level. Glomalin synthesis by the fungi is positively affected by the soil nitrogen availability. Nitrogen is the main constituent of this glycoprotein. Plant photosynthates are translocated to the fungal organs via roots and mainly utilized for glomalin synthesis in hyphal and spore cell walls. During this process, nitrogen plays an important role as a constituent of the glycoprotein. The Bradford method was used for glomalin determination in this study. The method is not specific for glomalin and can also measure other glomalin related proteins and glycoproteins. Other proteins increased by N fertilization can hence be measured based on Bradford method. Once plant assimilates are translocated to the fungi, they may be transformed to the nitrogenous compounds if sufficient nitrogen sources are available. Accordingly, a considerable amount of fixed carbon is assimilated in fungal organs and soil particles. It can be concluded that carbon sequestration by arbuscular mycorrhizal symbiosis in terrestrial ecosystems can be improved by N fertilization at optimum level. In addition, the presence of rhizobium bacteria can meet the nitrogen requirement of plants through biological stabilization of nitrogen.
Keywords
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved