>
Fa   |   Ar   |   En
   comparison between different methods of feature extraction in bci systems based on ssvep  
   
نویسنده ‎sheykhivand‎ s. ,‎yousefi ‎r‎ezaii‎ t. ,‎naderi saatlo‎ a. ,‎romooz‎ n.
منبع international journal of industrial mathematics - 2017 - دوره : 9 - شماره : 4 - صفحه:341 -347
چکیده    ‎there are different feature extraction methods in brain-computer interfaces (bci) based on steady-state visually evoked potentials (ssvep) systems‎. ‎this paper presents a comparison of five methods for stimulation frequency detection in ssvep-based bci systems‎. ‎the techniques are based on power spectrum density analysis (psda)‎, ‎fast fourier transform (fft)‎, ‎hilbert‎-‎huang transform (hht)‎, ‎cross correlation and canonical correlation analysis (cca)‎. ‎the results demonstrate that the cca and fft can be successfully applied for stimulus frequency detection by considering the highest accuracy and minimum consuming ‎time.‎
کلیدواژه bci ,cca ,cross correlation ,fft ,fuzzy ,hht ,psda ,‎ssvep‎
آدرس university of tabriz, faculty of electrical and computer engineering, ایران, university of tabriz, faculty of electrical and computer engineering, ایران, ‎islamic azad university‎, urmia branch‎, department of electrical-electronics engineering, ایران, ‎islamic azad university‎, urmia branch‎, department of electrical-electronics engineering, ایران
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved