>
Fa   |   Ar   |   En
   weighted differentiation composition operators from weighted bergman spaces with admissible weights to blochtype spaces  
   
نویسنده rezaei sh.
منبع international journal of industrial mathematics - 2021 - دوره : 13 - شماره : 2 - صفحه:113 -121
چکیده    For an analytic selfmap ‎$‎‎varphi‎$ ‎of ‎the ‎unit disk ‎‎$‎‎mathbb{d}‎$ ‎in ‎the ‎complex ‎plane $‎‎mathbb{c}‎‎$‎,‎ a nonnegative integer ‎$‎n‎$‎, and ‎$u‎$ ‎analytic function ‎on ‎‎$‎‎mathbb{d}‎‎$‎, weighted differentiation composition operator is defined by ‎$(d_{varphi,u}^nf) (z)=u(z)f^{(n)}(varphi(z))$‎‎, where ‎$‎f‎$ is an ‎analytic function ‎on‎ ‎‎$‎‎mathbb{d}‎$ and ‎$‎zinmathbb{d}‎$‎.‎ in this paper, we study the boundedness‎ and compactness of ‎ $d_{varphi,u}^n‎$, ‎‎ ‎from weighted bergman spaces with admissible ‎weights‎ to blochtype spaces.
کلیدواژه weighted differentiation composition operator ,weighted bergman space ,bloch-type space ,admissible weight ,boundedness ,‎ ‎compactness
آدرس ‎islamic azad university‎, ‎aligudarz branch‎, department of mathematics‎, iran
پست الکترونیکی sh-rezaei88@yahoo.com
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved