>
Fa   |   Ar   |   En
   پیش‌بینی زمان ورود اتوبوس به ایستگاه با استفاده از داده‌های avl: مطالعه موردی سیستم اتوبوس‌رانی شهر قزوین  
   
نویسنده هاشمی حسین ,البدوی امیر
منبع مهندسي حمل و نقل - 1398 - دوره : 10 - شماره : 3 - صفحه:531 -542
چکیده    سیستم اتوبوس شهری در حال حاضر در دنیا به عنوان یکی از مهم‌ترین زیرساخت‌های سیستم حمل و نقل عمومی در جابجایی مردم شناخته می‌شود و به  افزایش کیفیت خدمات این سیستم و برآورده کردن نیاز مردم منجر می‌شود تا نگرش مردم از حمل و نقل شخصی به حمل و نقل عمومی تغییر کند. در چند سال گذشته سامانه‌های موقعیت‌یاب خودکار خودرو جهت بهبود خدمات حمل و نقل عمومی در کشور راه‌اندازی شده است و داده‌های جمع‌آوری شده توسط این سامانه‌ها کمتر در جهت رضایت مشتریان (مسافران) استفاده شده‌اند.  با توجه به اینکه اطلاع از زمان نسبتاً دقیق ورود اتوبوس به ایستگاه یکی از نیازهای مهم مسافران است در این مطالعه با استفاده از داده‌های موقعیت مکانی سیستم اتوبوس‌رانی شهر قزوین مبتنی بر زمان سفر هر اتوبوس و سرفاصله بین ایستگاه‌ها، بکارگیری داده های موقعیت‌یاب خودکار خودرو و بهره‌گیری از مدل‌های پایه در پیش‌بینی زمان ورود اتوبوس‌ها به ایستگاه نظیر شبکه عصبی مصنوعی و مدل‌های آماری نظیر مدل خودرگرسیو میانگین متحرک و ماشین‌های بردار پشتیبان، پیش‌بینی مدنظر،  ارائه شده و مدل مطلوب توسعه یافته و بر اساس خروجی مدل‌های استفاده شده مدل شبکه عصبی عملکرد بهتری در پیش‌بینی زمان رسیدن اتوبوس‌ها به ایستگاه از خود نشان داده است. ازآنجایی‌که در ایران تاکنون مطالعه علمی در زمینه استفاده از داده‌های موقعیت‌یاب خودکار خودرو برای پیش‌بینی زمان ورود اتوبوس به ایستگاه انجام نشده است، این مقاله سعی کرده است با استفاده از تکنیک‌های مطرح و داده‌های دنیای واقعی ، نگاه علمی را در این حوزه کاربردی ارائه نماید
کلیدواژه پیش‌بینی زمان ورود، اتوبوس‌رانی، داده‌های موقعیت مکانی، قابلیت اطمینان، شبکه عصبی مصنوعی
آدرس دانشگاه تربیت مدرس, دانشکده مهندسی صنایع و سیستم‌ها, ایران, دانشگاه تربیت مدرس, دانشکده مهندسی صنایع و سیستم‌ها, ایران
 
   Prediction of bus arrival time to stations by using AVL data: Case study of Qazvin public bus system  
   
Authors Hashemi Hossein ,Albadavi Amir
Abstract    City bus transportation system is considered as one of the most important transportation infrastructure system for transporting passengers in world. One solution to increase the quality of bus services and to meet passengers’ needs is to change their attitude about bus service and make a shift from private transportation to pubic mobility. In recent years, Automatic vehicle location (AVL) systems have been used in order to improve transportation services quality in Iran, but mostly the gathered data are not analyzed for gaining customers satisfaction. Given the fact that knowing exact bus arrival time to stations is one of the most important needs of passengers, in this survey by using Qazvin city bus system datasets, which is mainly based on travel time and headways, a prediction model is presented. The model uses AVL data and some basic wellknown statistical and machine learning models such as Neural Networks, ARIMA time series and Support Vector Machines. According to our results, ANN model performs better than other models in predicting bus arrival time to stations. Given that similar research has not been done to predict the arrival time of buses in Iran, This article has attempted to use the wellknown techniques and realworld data, provide empirical view in this scope.
Keywords
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved