>
Fa   |   Ar   |   En
   laser-induced breakdown spectroscopy as a powerful tool for distinguishing high- and low-vigor soybean seed lots  
   
نویسنده larios gustavo s. ,nicolodelli gustavo ,senesi giorgio s. ,ribeiro matheus c. s. ,xavier alfredo a. p. ,milori débora m. b. p. ,alves charline z. ,marangoni bruno s. ,cena cícero
منبع food analytical methods - 2020 - دوره : 13 - شماره : 9 - صفحه:1691 -1698
چکیده    The tests commonly used to determine seed vigor are often laborious and time-consuming; thus, rapid methods are highly required for identifying high-vigor seeds among different batches. in this paper, we describe a novel approach able to distinguishing among batches of soybean seeds of different physiological quality based on their nutrient content measured by laser-induced breakdown spectroscopy (libs) assisted by multivariate analysis and machine learning algorithms. these include principal component analysis (pca), support vector machine learning (svm), linear and quadratic discriminant analyses (lda and qda), and nearest neighbor methods (knn). a total of 92 measurements, 46 collected from batches marketed as low-vigor seeds and 46 as high-vigor seeds, were analyzed. the svm method performed the best in discriminating among the batches. in particular, the quadratic svm function could classify correctly 100% of the high-vigor samples and 97.8% of the low-vigor samples, whereas the cubic function yielded the opposite result; i.e., 97.8% of the high-vigor samples and 100% of the low-vigor samples were classified correctly. the best libs spectral region for the analysis was in the range of 350–450 nm, with calcium being the main distinguishing element. thus, the libs technique combined with machine learning classification methods showed a promising potential for classifying soybean seed batches according to their physiological quality.
کلیدواژه libs analysis ,soybean seeds ,vigor ,discrimination ,multivariate analysis
آدرس ufms – universidade federal de mato grosso do sul, programa de pós-graduação em ciência dos materiais, brazil, ufms – universidade federal de mato grosso do sul, programa de pós-graduação em ciência dos materiais, brazil. ufsc – universidade federal de santa catarina, brazil, cnr - istituto per la scienza e tecnologia dei plasmi (istp), italy, ufms – universidade federal de mato grosso do sul, programa de pós-graduação em ciência dos materiais, brazil, embrapa instrumentation, brazil, embrapa instrumentation, brazil, ufms – universidade federal de mato grosso do sul, programa de pós-graduação em agronomia, brazil, ufms – universidade federal de mato grosso do sul, programa de pós-graduação em ciência dos materiais, brazil, ufms – universidade federal de mato grosso do sul, programa de pós-graduação em ciência dos materiais, brazil
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved