>
Fa   |   Ar   |   En
   The multivariate temporal response function (mTRF) toolbox: A MATLAB toolbox for relating neural signals to continuous stimuli  
   
نویسنده crosse m.j. ,di liberto g.m. ,bednar a. ,lalor e.c.
منبع frontiers in human neuroscience - 2016 - دوره : 10 - شماره : NOV2016
چکیده    Understanding how brains process sensory signals in natural environments is one of the key goals of twenty-first century neuroscience. while brain imaging and invasive electrophysiology will play key roles in this endeavor,there is also an important role to be played by noninvasive,macroscopic techniques with high temporal resolution such as electro- and magnetoencephalography. but challenges exist in determining how best to analyze such complex,time-varying neural responses to complex,time-varying and multivariate natural sensory stimuli. there has been a long history of applying system identification techniques to relate the firing activity of neurons to complex sensory stimuli and such techniques are now seeing increased application to eeg and meg data. one particular example involves fitting a filter—often referred to as a temporal response function—that describes a mapping between some feature(s) of a sensory stimulus and the neural response. here,we first briefly review the history of these system identification approaches and describe a specific technique for deriving temporal response functions known as regularized linear regression. we then introduce a new open-source toolbox for performing this analysis. we describe how it can be used to derive (multivariate) temporal response functions describing a mapping between stimulus and response in both directions. we also explain the importance of regularizing the analysis and how this regularization can be optimized for a particular dataset. we then outline specifically how the toolbox implements these analyses and provide several examples of the types of results that the toolbox can produce. finally,we consider some of the limitations of the toolbox and opportunities for future development and application. © 2016 crosse,di liberto,bednar and lalor.
کلیدواژه EEG/MEG; Reverse correlation; Sensory processing; Stimulus reconstruction; System identification
آدرس trinity centre for bioengineering and trinity college institute of neuroscience,trinity college dublin,dublin,ireland,department of pediatrics and department of neuroscience,albert einstein college of medicine,the bronx,ny, United States, trinity centre for bioengineering and trinity college institute of neuroscience,trinity college dublin,dublin, Ireland, trinity centre for bioengineering and trinity college institute of neuroscience,trinity college dublin,dublin,ireland,department of biomedical engineering and department of neuroscience,university of rochester,rochester,ny, United States, trinity centre for bioengineering and trinity college institute of neuroscience,trinity college dublin,dublin,ireland,department of biomedical engineering and department of neuroscience,university of rochester,rochester,ny, United States
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved