|
|
On Numerical Landau Damping for Splitting Methods Applied to the Vlasov–HMF Model
|
|
|
|
|
نویسنده
|
Faou Erwan ,Horsin Romain ,Rousset Frédéric
|
منبع
|
foundations of computational mathematics - 2018 - دوره : 18 - شماره : 1 - صفحه:97 -134
|
چکیده
|
We consider time discretizations of the vlasov–hmf (hamiltonian mean-field) equation based on splitting methods between the linear and nonlinear parts. we consider solutions starting in a small sobolev neighborhood of a spatially homogeneous state satisfying a linearized stability criterion (penrose criterion). we prove that the numerical solutions exhibit a scattering behavior to a modified state, which implies a nonlinear landau damping effect with polynomial rate of damping. moreover, we prove that the modified state is close to the continuous one and provide error estimates with respect to the time step size.
|
کلیدواژه
|
Geometric numerical integration ,Splitting methods ,Vlasov equations ,Landau damping ,HMF model ,35Q83 ,35P25
|
آدرس
|
Université de Rennes I, France, Université de Rennes I, France, Université Paris-Sud et Institut Universitaire de France, Laboratoire de Mathématiques d’Orsay (UMR 8628), France
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Authors
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|