>
Fa   |   Ar   |   En
   Regularized Kernel-Based Reconstruction in Generalized Besov Spaces  
   
نویسنده Griebel Michael ,Rieger Christian ,Zwicknagl Barbara
منبع foundations of computational mathematics - 2018 - دوره : 18 - شماره : 2 - صفحه:459 -508
چکیده    We present a theoretical framework for reproducing kernel-based reconstruction methods in certain generalized besov spaces based on positive, essentially self-adjoint operators. an explicit representation of the reproducing kernel is given in terms of an infinite series. we provide stability estimates for the kernel, including inverse bernstein-type estimates for kernel-based trial spaces, and we give condition estimates for the interpolation matrix. then, a deterministic error analysis for regularized reconstruction schemes is presented by means of sampling inequalities. in particular, we provide error bounds for a regularized reconstruction scheme based on a numerically feasible approximation of the kernel. this allows us to derive explicit coupling relations between the series truncation, the regularization parameters and the data set.
کلیدواژه Reproducing kernels ,A priori error analysis ,Generalized Besov spaces ,Feasible reconstruction schemes ,Spline smoothing ,41A17 ,41A25 ,41A58 ,42A82 ,62G08
آدرس Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI, Germany. Universität Bonn, Germany, Universität Bonn, Germany, Universität Bonn, Germany. Universität Würzburg, Germany
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved