|
|
A Convergent Lagrangian Discretization for a Nonlinear Fourth-Order Equation
|
|
|
|
|
نویسنده
|
Matthes Daniel ,Osberger Horst
|
منبع
|
foundations of computational mathematics - 2017 - دوره : 17 - شماره : 1 - صفحه:73 -126
|
چکیده
|
A fully discrete lagrangian scheme for numerical solution of the nonlinear fourth-order dlss equation in one space dimension is analyzed. the discretization is based on the equation’s gradient flow structure in the $$l^2$$ -wasserstein metric. by construction, the discrete solutions are strictly positive and mass conserving. a further key property is that they dissipate both the fisher information and the logarithmic entropy. our main result is a proof of convergence of fully discrete to weak solutions in the limit of vanishing mesh size. convergence is obtained for arbitrary nonnegative, possibly discontinuous initial data with finite entropy, without any cfl-type condition. the key estimates in the proof are derived from the dissipations of the two lyapunov functionals. numerical experiments illustrate the practicability of the scheme.
|
کلیدواژه
|
Lagrangian discretization ,Gradient flow ,Wasserstein metric ,Quantum drift diffusion ,Primary 65M12 ,Secondary 35A15 ,35G31
|
آدرس
|
Technische Universität München, Germany, Technische Universität München, Germany
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Authors
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|