>
Fa   |   Ar   |   En
   A Lower Bound for the Determinantal Complexity of a Hypersurface  
   
نویسنده Alper Jarod ,Bogart Tristram ,Velasco Mauricio
منبع foundations of computational mathematics - 2017 - دوره : 17 - شماره : 3 - صفحه:829 -836
چکیده    We prove that the determinantal complexity of a hypersurface of degree $$d > 2$$ is bounded below by one more than the codimension of the singular locus, provided that this codimension is at least 5. as a result, we obtain that the determinantal complexity of the $$3 times 3$$ permanent is 7. we also prove that for $$n> 3$$ , there is no nonsingular hypersurface in $${mathbb {p}}^n$$ of degree d that has an expression as a determinant of a $$d times d$$ matrix of linear forms, while on the other hand for $$n le 3$$ , a general determinantal expression is nonsingular. finally, we answer a question of ressayre by showing that the determinantal complexity of the unique (singular) cubic surface containing a single line is 5.
کلیدواژه Determinantal complexity ,Affine linear projections ,Permanents ,Cubic surfaces ,68Q05 ,68Q17 ,14M12
آدرس Australian National University, Australia, Universidad de los Andes, Departamento de Matemáticas, Colombia, Universidad de los Andes, Departamento de Matemáticas, Colombia
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved