>
Fa   |   Ar   |   En
   Every Matrix is a Product of Toeplitz Matrices  
   
نویسنده Ye Ke ,Lim Lek-Heng
منبع foundations of computational mathematics - 2016 - دوره : 16 - شماره : 3 - صفحه:577 -598
چکیده    We show that every $$n,times ,n$$ matrix is generically a product of $$lfloor n/2 rfloor + 1$$ toeplitz matrices and always a product of at most $$2n+5$$ toeplitz matrices. the same result holds true if the word ‘toeplitz’ is replaced by ‘hankel,’ and the generic bound $$lfloor n/2 rfloor + 1$$ is sharp. we will see that these decompositions into toeplitz or hankel factors are unusual: we not, in general, replace the subspace of toeplitz or hankel matrices by an arbitrary $$(2n-1)$$ -dimensional subspace of $${n,times ,n}$$ matrices. furthermore, such decompositions do not exist if we require the factors to be symmetric toeplitz or persymmetric hankel, even if we allow an infinite number of factors.
کلیدواژه Toeplitz decomposition ,Hankel decomposition ,Linear algebraic geometry ,14A10 ,15A23 ,15B05 ,20G20 ,65F30
آدرس University of Chicago, Department of Mathematics, USA, University of Chicago, Department of Statistics, USA
 
     
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved