>
Fa   |   Ar   |   En
   ارزیابی مدل‌های هوش مصنوعی مبتنی بر درخت به منظور پیش‌بینی خطر سیل در بستر gis  
   
نویسنده اسلامی نژاد احمد ,افتخاری مبین ,محمودی زاده سعید ,اکبری محمد ,حاجی الیاسی علی
منبع تحقيقات منابع آب ايران - 1400 - دوره : 17 - شماره : 2 - صفحه:174 -189
چکیده    سیل یکی از مخرب‌ترین انواع بلایای طبیعی است که هر ساله باعث از دست رفتن جان و مال انسان‌ها در سراسر جهان می‌شود. هدف از تحقیق حاضر ارزیابی و مقایسه قابلیت سه مدل یادگیری ماشین یعنی درخت بیز ساده (‏nbtree)‏، درخت تصمیم متناوب (adtree) و جنگل تصادفی (‏rf) ‏برای پیش‌بینی خطر وقوع سیل در شهرستان مانه و سملقان می‌باشد. نوآوری تحقیق حاضر ارائه مدل‌های ترکیبی مبتنی بر درخت می‌باشد که کمتر در تحقیقات پیشین مورد استفاده قرار گرفته‌اند. برای تهیه نقشه مرجع سیل در منطقه موردمطالعه، 300 موقعیت مستعد سیل شناسایی شدند و از طریق انتخاب تصادفی با نسبت 70 به 30 به مجموعه داده‌های آموزشی و اعتبارسنجی تقسیم شدند. پایگاه‌ داده مکانی سیل با استفاده از 15 معیار هیدروژئولوژیکی و محیطی موثر بر سیل ایجاد شد. در نهایت، نقشه‌های پیش‌بینی خطر سیل با استفاده از مدل‌های nbtree، adtree و rf تهیه شدند. به منظور اعتبار‌سنجی مدل‌های پیش‌بینی خطر سیل، معیار سطح زیر منحنی (‏auc)‏ و معیارهای آماری نرخ پیش‌بینی مثبت، نرخ پیش‌بینی منفی، حساسیت، ویژگی و دقت مورد استفاده قرار گرفتند. نتایج نشان داد که مدل rf دقت بالاتری نسبت به مدل‌های nbtree و adtree در پیش‌بینی خطر سیل منطقه موردمطالعه دارد. ​همچنین، نتایج نشان داد که احتمال وقوع خطر سیل در مناطق مرکزی منطقه موردمطالعه به دلیل ارتفاع و شیب کمتر، بیشتر از سایر مناطق است.
کلیدواژه پیش‌بینی سیل، درخت بیز ساده، درخت تصمیم‌ متناوب، جنگل تصادفی
آدرس دانشگاه تهران, دانشکده مهندسی نقشه ‎برداری و اطلاعات مکانی, گروه مهندسی نقشه برداری, ایران, دانشگاه آزاد اسلامی واحد مشهد, باشگاه پژوهشگران جوان و نخبگان, ایران, دانشگاه تحصیلات تکمیلی صنعتی فناوری پیشرفته کرمان, ایران, دانشگاه بیرجند, گروه مهندسی عمران, ایران, دانشگاه صنعتی خواجه نصیرالدین طوسی, گروه آب و سازه‌های هیدرولیکی, ایران
پست الکترونیکی alielyasi2015@gmail.com
 
   Evaluation of Tree-Based Artificial Intelligence Models to Predict Flood Risk using GIS  
   
Authors Eslaminezhad Seyed Ahmad ,Eftekhari Mobin ,Mahmoodizadeh Saeid ,Akbari Mohammad ,Haji Elyasi Ali
Abstract    Floods are one of the most devastating types of natural disasters that every year causes the loss of human lives and properties around the world. The purpose of this study is to evaluate and compare the capability of three machine learning models namely Naïve Bayes Tree (NBTree), Alternating Decision Tree (ADTree), and Random Forest (RF) to predict flood risk in Maneh and Samalqan county. The novelty of the present study is the presentation of treebased hybrid models that have been less used in previous research. To prepare a flood reference map in the study area, 300 floodprone locations were identified and were divided into training and validation data sets through random selection with a ratio of 70 to 30. The spatial database of the flood was created using 15 hydrogeological and environmental criteria affecting the flood. Finally, three flood risk prediction maps were generated using NBTree, ADTree, and RF models. To validate the flood risk predicting models, the Area Under the Curve (AUC) factor and the statistical criteria of Positive predictive rate, negative predictive rate, sensitivity, specificity, and accuracy were used. The results showed that the RF model had higher accuracy than the NBTree and ADTree models in predicting flood risk in the study area. The results also showed that the risk of flooding in the central areas of the study area is higher than other areas due to lower altitude and slope.
Keywords
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved