>
Fa   |   Ar   |   En
   پیش‌بینی تراز سطح آب مخزن سد با استفاده از روش ماشین هوشمند نظارت شده، مطالعه موردی: سد امیرکبیر کرج  
   
نویسنده محمدرضاپور طبری محمود ,ملک پور شهرکی محمدمهدی
منبع تحقيقات منابع آب ايران - 1397 - دوره : 14 - شماره : 5 - صفحه:14 -26
چکیده    پیش‌بینی صحیح تغییرات تراز سطح آب مخازن به عنوان یکی از مسائل مهم جهت مدیریت، طراحی، بهره‌برداری از سدها و تامین نیازهای آبی مطرح می‌باشد. در این مطالعه بر پایه پنج مدل نرم رگرسیون بردار پشتیبان (svr)، سیستم استنتاج عصبی فازی تطبیقی (anfis)، شبکه عصبی (ann)، شبکه عصبی شعاعی (rbfnn) و شبکه عصبی مبتنی بر رگرسیون عمومی (grnn) و استفاده تلفیقی از نتایج آن‌ها به عنوان ورودی به یکی از این پنج مدل، ساختاری تحت عنوان ماشین هوشمند نظارت شده (sicm) جهت برآورد تراز سطح آب ماهانه مخزن سد امیرکبیر کرج پیشنهاد گردید. داده‌های مورد استفاده شامل تراز سطح آب، بارندگی، تبخیر، حجم ورودی و خروجی از مخزن سد بوده و ارزیابی مدل‌های مذکور توسط نه شاخص خطا صورت گرفت و با استفاده از روش تصمیم‌گیرنده ویکور، بهترین مدل از میان مدل‌های مذکور انتخاب گردید. پس از انجام بررسی‌های لازم در میان مدل‌های نرم مورد استفاده، مدل ann با ضریب راندمان نش و میانگین مجذور خطای به ترتیب 0.89 و 23.37 متر مربع به عنوان بهترین مدل شناخته شد. نتایج بدست آمده از رویکرد پیشنهادی نشان می‌دهد که مدل نظارت شده (هیبریدی) شبکه عصبی (sicmann) با افزایش ضریب راندمان نش به 0.94 و کاهش میانگین مجذور خطا به 12.85 متر مربع (بیش از 45 درصد کاهش) توانسته عملکرد بالایی را در پیش‌بینی صحیح میزان تراز سطح آب ماهانه مخزن سد کرج ارائه نماید. بر این اساس استفاده هیبریدی از مدل‌های نرم می‌تواند در کاهش چشمگیر خطای پیش‌بینی تراز سطح آب نسبت به مدل‌های منفرد به طور موثری بکار گرفته شود.
کلیدواژه پیش‌بینی، تراز سطح آب مخزن، سد امیرکبیر کرج، ماشین هوشمند نظارت شده، مدل‌های نرم
آدرس دانشگاه شهرکرد, دانشکده فنی, گروه مهندسی عمران, ایران, دانشگاه شهرکرد, دانشکده فنی, ایران
 
   Reservoir Water Level Prediction Using Supervised Intelligent Committee Machine Method, Case Study: Karaj Amirkabir Dam  
   
Authors Mohammad Rezapour Tabari M. ,Malekpour Shahraki M.M.
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved