>
Fa   |   Ar   |   En
   prediction of tunnelling-induced surface settlement with artificial neural networks, case study: mashhad subway tunnel  
   
نویسنده mehrnahad h. ,kholgh zekrabad m.
منبع زمين شناسي مهندسي - 2018 - دوره : 12 - - کد همایش: - صفحه:135 -158
چکیده    In urban areas, it is essential to protect the existing adjacent structures and underground facilities from the damage due to tunneling. in order to minimize the risk, a tunnel engineer needs to be able to make reliable prediction of ground deformations induced by tunneling. numerous investigations have been conducted in recent years to predict the settlement associated with tunneling; the selection of appropriate method depends on the complexity of the problems. this research intends to develop a method based on artificial neural network (ann) for the prediction of tunnellinginduced surface settlement. surface settlements above a tunnel due to tunnel construction are predicted with the help of input variables that have direct physical significance. the data used in running the network models have been obtained from line 2 of mashhad subway tunnel project. in order to predict the tunnellinginduced surface settlement, a multilayer perceptron (mlp) analysis is used. a threelayer, feedforward, backpropagation neural network, with a topology of 7241 was found to be optimum. for optimum ann architecture, the correlation factor and the minimum of mean squared error are 0.963 and 2.41e04, respectively. the results showed that an appropriately trained neural network could reliably predict tunnellinginduced surface settlement.
کلیدواژه surface settlement ,artificial neural network ,mashhad subway tunnel ,prediction of settlement
آدرس yazd university, dept. of civil engineering, iran, yazd university, dept. of civil engineering, iran
 
   Prediction of Tunnelling-Induced Surface Settlement with Artificial Neural Networks, Case Study: Mashhad Subway Tunnel  
   
Authors
  
 
 

Copyright 2023
Islamic World Science Citation Center
All Rights Reserved